
Computer Vision I: Project 5 (10 points)

Due on Dec. 31th, 11:59pm

1 Background

This project is based on Section 11.2.3: Learning by alternating back-propagation. Read the textbook for
more information.

1.1 Objective

The objective of this project is to experience the multi-layered generator network, which is a top-down
generative model. It is a nonlinear generalization of the factor analysis model. This top-down generative
model has the following properties:
1. Embedding. The model embeds the high-dimensional non-Euclidean manifold formed by the observed

examples into the low-dimensional Euclidean space of the latent factors so that linear interpolation in the
low-dimensional factor space results in nonlinear interpolation in the data space.

2. Analysis. The model disentangles the variations in the observed examples into independent variations of
latent factors.

3. Synthesis. In contrast to the bottom-up descriptive model which samples in high-dimensional space to
synthesize examples, the top-down model can synthesize new examples by sampling the factors from the
known low-dimensional prior distribution and transforming the factors into the synthesized examples.

1.2 Python Library

Please install the latest matplotlib, numpy, pillow, torch and torchvision. You are also welcome to utilize
any libraries of your choice, but please report them in your report (for autograder)! Again, report any
customized library in the report (do not go too crazy as this will add a significant burden to TAs).

1.3 What to hand in?

Please submit both a formal report and the accompanying code. For the report, kindly provide a PDF version.
You may opt to compose a new report or complete the designated sections within this document, as can be
started by simply loading the tex file to Overleaf. Your score will be based on the quality of your results, the
analysis (diagnostics of issues and comparisons) in your report, and your code implementation. You may
delete all the images before handing them in, as they may be too large for the autograder.

Notice. Do not modify the function names, parameters, and returns in the given code, unless explicitly
specified in this document.

1.4 Help

Make a diligent effort to address any encountered issues independently, and in cases where challenges exceed
your capabilities, do not hesitate to seek assistance! Collaboration with your peers is permitted, but it is
crucial that you refrain from directly examining or copying one another’s code. Please be aware that you’ll
fail the course if our code similarity checker, which has found some prohibited behaviors before, detects
these violations. For details, please refer to: https://yzhu.io/s/teaching/plagiarism.

1

https://yzhu.io/s/teaching/plagiarism


2 Introduction to the Deep Generative Model

Notations. Let I be a D-dimensional observed example, such as an image. Let z be the d-dimensional vector
of continuous latent factors, z “ pzk, k “ 1, ..., dq. The traditional factor analysis model is I “ Wz ` ϵ,
where W is D ˆ d matrix, ϵ is a D-dimensional error vector or the observational noise, usually d ă D,
z „ Np0, Idq, and ϵ „ Np0, σ2IDq. The deep generative model generalizes the linear mapping Wz to a
non-linear mapping gpz; θq, where g is a ConvNet, and θ collects all the connection weights and bias terms
of the ConvNet. Then the model becomes

I “ gpz; θq ` ϵ,

z „ Np0, Idq, ϵ „ Np0, σ2IDq, d ă D. (1)

The reconstruction error is }I ´ gpz; θq}2.
Although gpz; θq can be any nonlinear mapping, the ConvNet parameterization of gpz; θq makes it

particularly close to the original factor analysis. Specifically, we can write the top-down ConvNet as follows:

zpl´1q “ glpWlz
plq ` blq, (2)

where gl is element-wise nonlinearity at layer l, Wl is the weight matrix, bl is the vector of bias terms at layer
l, and θ “ pWl, bl, l “ 1, ..., Lq. zp0q “ gpz; θq, and zpLq “ z. The top-down ConvNet (2) can be considered
a recursion of the original factor analysis model, where the factors at the layer l ´ 1 are obtained by the linear
superposition of the basis vectors or basis functions that are column vectors of Wl, with the factors at the
layer l serving as the coefficients of the linear superposition.

We employ the alternating back-propagation algorithm for maximum likelihood learning of the generator
network that iterates the following two steps:

(1) Inferential back-propagation: For each training example, infer the continuous latent factors by
Langevin dynamics.

(2) Learning back-propagation: Update the parameters given the inferred latent factors by gradient
descent.

Specifically, the joint density is ppz, I; θq “ ppzqppI|z; θq, and

log ppz, I; θq “ ´
1

2σ2
}I ´ gpz; θq}2 ´

1

2
}z}2 ` constant, (3)

where the constant term is independent of z and θ.
For the training data tIi, i “ 1, ..., nu, the generator model can be trained by maximizing the log-

likelihood

Lpθq “
1

n

n
ÿ

i“1

log ppIi; θq. (4)

The gradient of Lpθq is obtained according to the following identity

B

Bθ
log ppI; θq “ Eppz|I;θq

„

B

Bθ
log ppz, I; θq

ȷ

. (5)

In general, the expectation in (5) is analytically intractable and has to be approximated by MCMC that
samples from the posterior ppz|I; θq, such as the Langevin inference dynamics, which iterates

zτ`1 “ zτ `
s2

2

B

Bz
log ppzτ , I; θq ` seτ , (6)

2



where τ indexes the time step, s is the step size, and eτ denotes the noise term, eτ „ Np0, Idq. for each
zi, only a single copy of zi is sampled from ppzi|Ii, θq by running a finite number of steps of Langevin
dynamics starting from the current value of zi, i.e., the warm start. With zi sampled from ppzi | Ii, θq for
each observation Ii by the Langevin inference process, the Monte Carlo approximation to L1pθq is

L1pθq «
1

n

n
ÿ

i“1

B

Bθ
log ppzi, Ii; θq

“
1

n

n
ÿ

i“1

1

σ2
pIi ´ gpzi; θqq

B

Bθ
gpzi; θq. (7)

The updating of θ solves a nonlinear regression problem so that the learned θ enables better reconstruction of
Ii by the inferred zi.

3 Experiment

For the lion-tiger images, you will learn a generative model with 2-dim latent factor vector. To reduce the
computational complexity, all images can be resized into the size of 128 ˆ 128 pixels.

Figure 1: lion-tiger images.

Fill the blank part of abp.py. Design your own structure of the generator. To generate vivid results, you
should adjust the learning rate, discretization step size of the Langevin dynamics, the number of Langevin
steps, and the annealing or tempering parameter σ2 in Eq.3.

4 Submission

(1) Reconstructed images of training images, using the inferred z from training images. Try both the warm-
start scheme (running a finite number of steps of Langevin dynamics starting from the current value of zi)
and cold-start scheme (running a finite number of steps of Langevin dynamics starting from the fixed prior
distribution of the latent factors)

(2) Randomly generated images, using randomly sampled z.

(3) Generated images with linearly interpolated latent factors from (-d, d). For example, you interpo-
late 12 points from (-d, d) for each z dimension. Then you will get a 12 ˆ 12 panel of images. Determine the

3



reasonable range (-d, d), and you should be able to see that tigers slightly change to lions.

(4) Plot of loss over iteration.

Write a report to show your results. And zip the report with your code.

4


	Background
	Objective
	Python Library
	What to hand in?
	Help

	Introduction to the Deep Generative Model
	Experiment
	Submission

