
Computer Vision I: Project 4 (10 points)

Due on Dec. 16th, 11:59pm

1 Background

This project is based on Section 11.1: Deep FRAME. Read the textbook for more information.

1.1 Python Library

Please install the latest matplotlib, pillow, scikit-image, torch and torchvision. You are also welcome to utilize
any libraries of your choice, but please report them in your report (for autograder)! Again, report any
customized library in the report (do not go too crazy as this will add a significant burden to TAs).

1.2 What to hand in?

Please submit both a formal report and the accompanying code. For the report, kindly provide a PDF
version. You may opt to compose a new report or complete the designated sections within this document, as
can be started by simply loading the tex file to Overleaf. Your score will be based on the quality of your
results, the analysis (diagnostics of issues and comparisons) of these results in your report, and your code
implementation. You may delete all the images before handing them in, as they may be too large for the
autograder.

Notice. Do not modify the function names, parameters, and returns in the given code, unless explicitly
specified in this document.

1.3 Help

Make a diligent effort to independently address any encountered issues, and in cases where challenges exceed
your capabilities, do not hesitate to seek assistance! Collaboration with your peers is permitted, but it is
crucial that you refrain from directly examining or copying one another’s code. Please be aware that you’ll
fail the course if our code similarity checker, which has found some prohibited behaviors before, detects
these violations. For details, please refer to: https://yzhu.io/s/teaching/plagiarism.

1

https://yzhu.io/s/teaching/plagiarism


2 Introduction to Hierarchical FRAME Model

Notations. Let Ipxq be an image defined on the square (or rectangular) image domain Λ, where x “ px1, x2q

indexes the coordinates of pixels. We can treat Ipxq as a two-dimensional function defined on Λ. We can also
treat I as a vector if we fix an ordering for the pixels.

For a filter (or neuron) F , let F ˚ I denote the filtered image or feature map, and let rF ˚ Ispxq denote the
filter response or feature at position x.

A hierarchical FRAME model is a composition of multiple layers of linear filtering and element-wise
non-linear transformation as expressed by the following recursive formula:

rF
plq
k ˚ Ispxq “ h

¨

˝

Nl´1
ÿ

i“1

ÿ

yPSl

w
pl,kq

i,y rF
pl´1q

i ˚ Ispx ` yq ` bl,k

˛

‚ (1)

where l P t1, 2, ...,Lu indexes the layer. tF
plq
k , k “ 1, ..., Nlu are the filters at layer l, and tF

pl´1q

i , i “

1, ..., Nl´1u are the filters at layer l ´ 1. bl,k is the bias term. k and i are used to index filters at layers l and
l ´ 1 respectively, and Nl and Nl´1 are the numbers of filters at layers l and l ´ 1 respectively. The filters are
locally supported, so the range of y is within a local support Sl (such as a 7 ˆ 7 image patch). At the bottom
layer, rF

p0q

k ˚ Ispxq “ Ikpxq, where k P tR,G,Bu indexes the three color channels. Sub-sampling may be
implemented so that in rF

plq
k ˚ Ispxq, x P Λl Ă Λ.

We take hprq “ maxpr, 0q, the rectified linear unit (re-lu), as is commonly adopted in ConvNet. We
define the following random field model as the hierarchical FRAME model:

ppI;wq “
1

Zpwq
exp

«

K
ÿ

k“1

ÿ

xPΛL

rF
pLq

k ˚ Ispxq

ff

qpIq, (2)

where w “ pwk, bk, k “ 1, ...,Kq are the filters at the top layer. qpIq is the Gaussian white noise model.
Model (2) corresponds to the exponential tilting model with scoring function

fpI;wq “

K
ÿ

k“1

ÿ

xPΛL

rF
pLq

k ˚ Ispxq. (3)

The learning of w from training images tIm,m “ 1, ...,Mu can be accomplished by maximum likelihood.
In our case, we have only 1 image for training, i.e. M “ 1. Let Lpwq “

řM
m“1 log ppI;wq{M ,

BLpwq

Bw
“

1

M

M
ÿ

m“1

B

Bw
fpIm;wq ´ EppIq

„

B

Bw
fpI;wq

ȷ

. (4)

The expectation can be approximated by Monte Carlo samples. One can sample from ppI;wq in (2) by
the Langevin dynamics:

Iτ`1 “ Iτ ´
ϵ2

2

„

Iτ ´
B

BI
fpI;wq

ȷ

` ϵZτ , (5)

where τ denotes the time step, ϵ denotes the step size, assumed to be sufficiently small, Zτ „ Np0,1q.
We can build up the model layer by layer. Given the filters at layers below, the top layer weight and bias

parameters can be learned according to

BLpwq

Bw
pL,kq

i,y

“
1

M

M
ÿ

m“1

ÿ

xPΛL

δ
pLq

k,x pIm;wqrF
pL´1q

i ˚ Imspx ` yq

´
1

M̃

M̃
ÿ

m“1

ÿ

xPΛL

δ
pLq

k,x pĨm;wqrF
pL´1q

i ˚ Ĩmspx ` yq,

(6)

2



and
BLpwq

BbL,k
“

1

M

M
ÿ

m“1

ÿ

xPΛL

δ
pLq

k,x pIm;wq ´
1

M̃

M̃
ÿ

m“1

ÿ

xPΛL

δ
pLq

k,x pĨm;wq. (7)

where Im are M observed images, and Ĩm are M̃ synthesized images sampled from the model. Here, we
choose M “ M̃ “ 1. Hint: you can leverage an automatic differentiation engine to simplify the computation
of gradients, e.g., PyTorch.

3 Experiment

For one of the input images, you will learn a hierarchical FRAME model. We define the Julesz ensemble
as the set of images that reproduce the observed sufficient statistics over those designed filters. You use
Langevin dynamics (code is given) to draw samples from the model. Figure 2 shows an example of synthesis.
The synthesis starts from a zero image and the sampling stops when it matches all the sufficient statistics. To
reduce the computational complexity, all images are resized into the size of 224 ˆ 224 pixels.

Figure 1: Six images: from low entropy(sparse regime) to high entropy (Gibbs regime).

Figure 2: Synthesis example. The first image is the training image, and from left to right, the rest images are synthesized
images using 1, 2, and 3 layers respectively.

4 Code

An overview of the learning of deep FRAME model:

1. Given a target image that specifies a type of texture, our goal is to model the statistics of this texture
and thereby synthesize a similar image.

2. The distribution of the image is governed by a FRAME model, with the exponential term determined
by a neural descriptor (CNN). The objective is to maximize the likelihood of target image under this
distribution. And the gradient w.r.t. the descriptor is derived as in Equation (4), where the first term can
be computed by leveraging autograd and the second term can be approximated via Langevin dynamics.

3



3. Starting from a zero-initialized image, we keep iterating the synthetic image. During each round of
training, we first update the synthetic image with a better one via Langevin dynamics. Then with this
updated synthetic image, we compute fpItgtq ´ fpIsynq, backward the loss, and update the parameters
of descriptor.

4. Notably, the objective to be maximized fpItgtq´fpIsynq would probably oscillate instead of increasing
monotonously. This is because sampling the synthetic image via Langevin dynamics would lead to
larger fpIsynq, despite the gradient ascent when updating descriptor parameters.

The training images locate at images/. The experimental results will be saved at a folder named
according to the configurations, e.g., rose_3layer (modeling rose texture with a 3-layer encoder).
deep_frame.py is the main entry function, which gives an example of learning and synthesizing images
from the model. Running this python file requires two arguments, one specifying the number of layers and
the other specifying the image tag. For example, train a 3-layer deep FRAME model on rose:

py thon deep_f rame . py −− l a y e r 3 −− t a g r o s e

Modification: You design your own structures of the model with 1 and 2 convolutional layers. The
example setting may not generate vivid results. You might need to adjust the learning rates and sampling step
size of the Langevin dynamics.

The code will determine GPU capabilities and fall back to CPU computation automatically.

5 Submission: results and analysis

In your submission, please provide the following:

1. Show the synthesized images with 1,2,3 layers on the beehive image for your best design.

2. Display the filters in the first layer using your visualization function. Compare these filters across the
images. For some selected images, try to compare the learned filtered in different designs.

3. Submit your completed code.

4


	Background
	Python Library
	What to hand in?
	Help

	Introduction to Hierarchical FRAME Model
	Experiment
	Code
	Submission: results and analysis

