
CV1 : project #2 (total 10 points)
Restoration and Inpainting

Due October 26th (Thur), 2023, 11:59pm

1 Background

This project is based on Section 3.2.1, Section 3.2.2, and Section 3.2.3 of the textbook. You shall read the
corresponding parts and understand the underlying logistics before writing your code.

1.1 Python Library

Please install the latest cv2, PIL, numpy, scipy, matplotlib, tqdm, torch (including torch-vision), and the
cython (if you want) packages. You are also welcome to utilize any libraries of your choice, but please
report them in your report (for autograder)! Again, report any customized library in the report
(do not go too crazy as this will add a significant burden to TAs).

1.2 What to hand in?

Please submit both a formal report and the accompanying code. For the report, kindly provide a PDF
version. You may opt to compose a new report or complete the designated sections within this document,
as can be started by simply loading the tex file to Overleaf. Your score will be based on the quality of
your results, the analysis (diagnostics of issues and comparisons) of these results in your report, and
your code implementation.

Notice

1. There is no immediate feedback autograder to help with the debugging this time. The autograder
will be run after the end of the homework!

2. Do not modify the function names in the given code, unless explicitly specified in this document.

1.3 Help

Make a diligent effort to independently address any encountered issues, and in cases where challenges
exceed your capabilities, do not hesitate to seek assistance! Collaboration with your peers is permitted,
but it is crucial that you refrain from directly examining or copying one another’s code. Please be aware
that you’ll fail the course if our code similarity checker, which has found some prohibited behaviors for
Project 1, detects these violations.

For details, please refer to https://yzhu.io/s/teaching/plagiarism/

1

https://yzhu.io/s/teaching/plagiarism/

2 Objective

This project serves as a preliminary exercise so that you can get familiar with Gibbs/MRF models, the
fundamental principles of the Gibbs sampler, and the application of Partial Differential Equations (PDE)
in the context of image restoration and inpainting. Three kinds of images are featured in the illustration
presented below, all enclosed within the compressed file provided. The original image comprises distinct
color bands, specifically Red, Green, and Blue. At the same time, the distorted counterpart is the result of
superimposing a mask image onto the Red band of the original image. It is worth noting that two image
sets are provided, one featuring a small font size, and the other, a big font size.

(a) Original Image (b) Mask Image (c) Distorted Image

In this experimental setting, pretend that you are provided solely with the distorted image denoted as
I in subfigure (c) and the corresponding mask image M featured in subfigure (b). The primary objective
of this experiment is to reconstruct the original image, represented as O, by filling in the masked pixels
exclusively within the Red-band. It is essential to underscore that no restorative action is required
for the Green and Blue bands. Given that information within the masked pixels has been irreversibly
compromised, our task is to approximate the original image as X, which serves as an estimable substitute
for O. To evaluate the efficacy of this restoration process, a per-pixel error assessment must be undertaken,
explicitly concerning all the pixels concealed by the mask, comparing the reconstructed X with the ground
truth image O.

As demonstrated below, to make the project more interesting, we offer three original images, and their
corresponding distorted version. Note that all of the images are of the same size, and they are masked at
the same place. You should conduct experiments on all of them.

(a) stone (b) sce (c) room

2

3 Method 1: Gibbs Sampler

3.1 Overview

Let Λ be the white pixels in the mask image M (distorted in I), and BΛ the boundary condition (i.e., the
undistorted pixels), which will stay unchanged. We compute

XΛ|XBΛ „ ppXΛ|XBΛq

by sampling from a Gibbs or MRF model of the following form

ppXΛ|XBΛq “
1

Z
expt´β

ÿ

px,yqPΛ

Ep∇xXpx, yqq ` Ep∇yXpx, yqqu,

where E() is a potential energy. We need to try two choices of functions:

• L1 norm: Ep∇xXpx, yqq “ |∇xXpx, yq|

• L2 norm: Ep∇xXpx, yqq “ p∇xXpx, yqq2.

From this Gibbs model, we can derive the local characteristics, given

Xs „ ppXs|XBsq,@s P Λ.

By drawing from this 1D probability (using the inverse CDF method mentioned in Project 1), we can
iteratively compute the values of the distorted pixels. Visiting all distorted pixels once is called 1-sweep
(in whatever order, it does not matter). You need to experiment with an annealing scheme by slowly
increasing the parameter β from 0.1 to 1 (or more).

3.2 Instructions

1. Please read through the main file and understand the whole logic.

2. Please implement the “conv()” function, which calculates the x direction and y direction gradients.
Please be careful that the function’s return should hold the same shape as the input, and the
boundary condition selected is periodic boundary condition.

3. Please implement the “gibbs_sampler()” function designed to execute Gibbs sampling for an
individual pixel. (Hints: Consider optimizations to enhance computational efficiency by avoiding
superfluous calculations.)

4. Implement the main function and tune the parameters for better effect.

4 Method 2: PDE

4.1 Overview

For L2-norm energy functions, you can minimize the energy by the heat-diffusion equation.

4.2 Instructions

1. Implement the “pde()” function, which performs pde update for a specific pixel.

2. Implement the main function and tune the parameters for better effect.

3. Please run more sweeps to see the marvelous effect of this method.

3

5 Speed Up (Optional)

This is not required in this project, and there is no extra bonus for implementing it. If you have time, you
can have a try.

1. If your implementation is done by using Torch, it’ll be much faster to change to numpy.

2. Use the cython library! Please first read the basic tutorial, and understand some basic logistics of
cython. Please be cautious that the “pyximport” method is the preferred approach as opposed
to the “setup.py” method. The latter may generate different files on different operating systems,
and it’s important to be aware that the autograder utilizes the Linux operating system. Now, you
are almost ready to speed up your Gibbs sampling, please read the working with numpy section of
the document. You have done a great job, and please speed up your Gibbs sampling process with
Cython!

6 Hand-in

1. Plot the per pixel error 1
|Λ|

ř

pXpx, yq´Opx, yqq2 over the number of sweeps t in for both methods.

2. Show the restored image sequence corresponding to the number of sweeps.

3. (Bonus, Optional) Where are the original images from? Try to find them in PKU, take nice photos
of them at a similar angle, report their names, and submit your photos.

4

https://cython.readthedocs.io/en/latest/src/tutorial/cython_tutorial.html
https://cython.readthedocs.io/en/latest/src/tutorial/numpy.html

	Background
	Python Library
	What to hand in?
	Help

	Objective
	Method 1: Gibbs Sampler
	Overview
	Instructions

	Method 2: PDE
	Overview
	Instructions

	Speed Up (Optional)
	Hand-in

