
Computer Vision I: Low-Middle Level Vision Homework Exercise #2

(total 10 points)

Due: November 28th 11:59 PM.

Problem 1 (Minimax entropy learning, 3 points).

This question aims to refresh the proof process in minimax entropy learning. Let p(I)

be a FRAME model with K histograms matched to the underlying model f(I)

p(I; Θ) =
1

Z(Θ)
exp{−

K∑
i=1

< λi, Hi(I) >} (1)

The parameter Θ = (λ1, ..., λK) is learned so that the following constraints are satisfied.

Ep[Hi(I)] = Ef [Hi(I)] = hi, i = 1, 2, ...,K. (2)

• Q1: Derive the following equation:

∂ logZ

∂λi
= −Ep[Hi(I)].

• Q2: Let ℓ(Θ) be the log-likelihood for one observed image Iobs, prove that

∂2ℓ(Θ)

∂λi∂λj
= −∂2 logZ

∂λi∂λj
(3)

= −Ep[(Hi(I)− hi)(Hj(I)− hj)], i, j ∈ {1, 2, ...,K} (4)

comment: Thus the second derivative of ℓ(Θ) is a negative covariance matrix. So

ℓ(Θ) has a single maximum solution.

Now suppose we extract a new feature from the dictionary F+ ∈ ∆, and augment the

model to

p+(I; Θ+) =
1

Z(λ+)
exp−

K∑
α=1

< λ∗
α, Hα(I) > − < λ+, H+(I) > (5)

The new parameter Θ+ = (λ∗
1, ..., λ

∗
K , λ+) is learned to not only satisfy the K constraints

specified in equation (2), but also an extra condition:

Ep+ [H+(I)] = Ef [H+(I)] = h+. (6)

Note: To match all the K + 1 statistical constraints, the existing parameters (λα →
λ∗
α, i = 1, 2, ...,K) must be updated when we introduce new features (marginal) because

all features are correlated.
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• Q3: Derive the steps for proving the following theorem

KL(f ||p)−KL(f ||p+) = KL(p+||p).

Problem 2 (Learning by information projection, 2 points )

Suppose that we are learning the underlying probability model f(I) of image I. We

start with an initial probability model, denoted as q(I), and observe that q(I) has a

different marginal probability over a macroscopic feature Hi(I):

Eq[Hi(I)] ̸= Ef [Hi(I)] = hi,

where hi is estimated from a set of examples sampled from f(I). To improve the current

model, we learn a new probability model p(I) so that it reproduces this marginal statistics

feature (p(I) may not necessarily replicate all the marginal probabilities that model q(I)

has matched previously). We denote the set of models that satisfy this constraint equation

by,

Ωi = {p : Ep[Hi(I)] = Ef [Hi(I)] = hi.}

Now, among all the p(I) in Ωi, we choose one that is closest to q(I) so that it preserves

the learning history.

p∗ = arg min
p∈Ωi

KL(p||q) = arg min
p∈Ωi

∫
p(I) log

p(I)

q(I)
dI.

1. Derive the formula of p(I) by leveraging the Euler-Lagrange equation (Tips: (I)

constrained optimization).

2. Prove that KL(f ||q) − KL(f ||p) = KL(p||q). (Remark: Since D(p||q) > 0, p is

closer to f than q).

3. Show that this optimization satisfies the maximum entropy principle when q(I) is a

uniform distribution.

Problem 3 (Information projection, 3 points)

Considering the feature pursuit in a family of models,

p0(x) → p1(x) → · · · → pK(x) ∼ f(x).

where

pK(x; ΘK) =
1

ZK
exp{−

K∑
i=1

λihi(x)}.

For simplicity, we treat λi as a scalar rather than a vector.
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In the minimax entropy process, when we add a new feature statistics hK(x), we need

to update all the parameters λi = 1, ...,K in the new model pK(x; ΘK) by MLE, so that

all the K constraint equations are satisfied,

EpK [hi(x)] = hobsi , i = 1, 2, ...,K.

In a different method, we can pursue a series of models in the following way,

q0(x) → q1(x) → · · · → qK(x) ∼ f(x).

with

qK(x) =
1

zK
qK−1(x) exp{−βKhK(x)}.

In this model, βK is decided by the new constraint

EqK [hK(x)] = Ef [hK(x)] ≈ hobsK .

In comparison to the previous p-series, the q-series observes the constraints one-by-one,

and fixes the previous parameters βi, i = 1, 2, ...,K − 1 when we learn βK , i.e.

qK(x; ) =
1

z1z2 · · · zK
qo(x) exp{−

K∑
i=1

βihi(x)}.

1. For the q-series, derive the formula for ∂ log zK
∂βk

.

2. Suppose we denote by ZK = z1z2 · · · zK−1 as the normalizing function for qK(x),

derive ∂2 logZK
∂βi∂βj

, ∀i, j ≤ K.

3. Prove that KL(f ||qK)−KL(f ||qK+1) = KL(qK+1||qK) ≥ 0, and prove the q-series

will converge to f

Problem 4 (Typical set, 2 points)

Suppose we toss a coin N times and observe a 0/1 sequence (for head and tail respec-

tively),

SN = (x1, x2, ..., xN ), xi ∈ {0, 1}.

SN is said to be of type q (i.e. the frequency of 1 is q in the sequence) with q = 1
N

∑N
i=1 xi.

Let Ω(q) be the set of all sequences SN of type q. For simplicity, we discretize q to

finite precision.

1. What is the cardinality of Ω(q) for q = 0.2 and q = 0.5 respectively? (Suppose we

only care about the exponential order or rate).
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2. Suppose we know that the underlying probability is xi = 1 (or xi = 0) with prob-

ability p (or 1 − p respectively), by sampling from this probability N times, what

is the probability p(SN ) that we observe a sequence SN ∈ Ω(q)? What is the total

probability mass p(Ω(q)) for all the sequences in set Ω(q)?

3. In the above question, show that as N → ∞, only sequences from the type p, i.e.

set Ω(p), can be observed.
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