Computer Vision I: Low-Middle Level Vision Homework Exercise #2
(total 10 points)
Due: November 28th 11:59 PM.

Problem 1 (Minimax entropy learning, 3 points).
This question aims to refresh the proof process in minimax entropy learning. Let p(I)
be a FRAME model with K histograms matched to the underlying model f(I)
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The parameter © = (A, ..., \x) is learned so that the following constraints are satisfied.
E,H;D)] = E¢[H;(I)] = h;, i=1,2,.., K. (2)

e Q1: Derive the following equation:
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e Q2: Let £(O) be the log-likelihood for one observed image I°*, prove that

ox®)  d*logZ 3
ONON; OO ®)
= _Ep[(Hi(I) _hi)(Hj(I) —hj)],i,j S {1727"'7K} (4)

comment: Thus the second derivative of ¢(©) is a negative covariance matriz. So

£(©) has a single mazimum solution.

Now suppose we extract a new feature from the dictionary Fy € A, and augment the

model to
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The new parameter ©, = (A}, ..., A}, Ay+) is learned to not only satisfy the K constraints

specified in equation (2), but also an extra condition:
By [H} (D] = Ef[H (1)] = hy (6)

Note: To match all the K + 1 statistical constraints, the existing parameters (A, —
Ab,i=1,2,..., K) must be updated when we introduce new features (marginal) because

all features are correlated.



e QQ3: Derive the steps for proving the following theorem
KL(f|lp) = KL(fllp+) = KL(p+|p).

Problem 2 (Learning by information projection, 2 points )
Suppose that we are learning the underlying probability model f(I) of image I. We
start with an initial probability model, denoted as ¢(I), and observe that ¢(I) has a

different marginal probability over a macroscopic feature H;(I):
Eq[H;(D)] # E¢[H;i(D)] = hy,

where h; is estimated from a set of examples sampled from f(I). To improve the current
model, we learn a new probability model p(I) so that it reproduces this marginal statistics
feature (p(I) may not necessarily replicate all the marginal probabilities that model ¢(I)
has matched previously). We denote the set of models that satisfy this constraint equation
by,

Qi =A{p: Ep[Hi(D)] = Ef[H;(I)] = hs.}
Now, among all the p(I) in ;, we choose one that is closest to ¢(I) so that it preserves

the learning history.

I
P = arg min KL(pllg) = arg min /p(I) log Zq)glidl-

1. Derive the formula of p(I) by leveraging the Euler-Lagrange equation (Tips: (I)

constrained optimization).

2. Prove that KL(f||q) — KL(f|lp) = KL(p||lq). (Remark: Since D(p||lq) > 0, p is
closer to f than g).

3. Show that this optimization satisfies the maximum entropy principle when ¢(I) is a

uniform distribution.
Problem 3 (Information projection, 3 points)
Considering the feature pursuit in a family of models,
po(x) = pi(x) = - = pr(z) ~ f(z).

where
1 K
pk (7;O0K) = Zr exp{— ; Aihi(z)}.

For simplicity, we treat \; as a scalar rather than a vector.



In the minimax entropy process, when we add a new feature statistics hx (x), we need
to update all the parameters \; = 1, ..., K in the new model px (z; O) by MLE, so that

all the K constraint equations are satisfied,
By [hi(z)] = hs®, i=1,2,.., K.
In a different method, we can pursue a series of models in the following way,
Q@) = q(@) = - = qr(x) ~ f(2)

with .
qx () = ;qml(l‘) exp{—PBrhi(z)}.

In this model, Bk is decided by the new constraint
Eqy [hi (2)] = Eflhi (z)] ~ hi®.

In comparison to the previous p-series, the g-series observes the constraints one-by-one,

and fixes the previous parameters 3;,i = 1,2, ..., K — 1 when we learn S, i.e.

1 K
qx (7;) = —————qo(x) exp{— Y _ Bihi(x)}.
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1. For the g-series, derive the formula for 613%.

2. Suppose we denote by Zx = z1z9---2zx—1 as the normalizing function for gx(x),

. 82 log Z .o
derive aﬂc:igaﬁ;‘, Vi, < K.

3. Prove that KL(f|lgx) — KL(f||qgx+1) = KL(qx+1llgx) > 0, and prove the g-series

will converge to f

Problem 4 (Typical set, 2 points)
Suppose we toss a coin N times and observe a 0/1 sequence (for head and tail respec-
tively),
SN = (21,22, ..., xN), x; €{0,1}.
S is said to be of type ¢ (i.e. the frequency of 1 is ¢ in the sequence) with ¢ = % Zﬁ\il T;.
Let Q(q) be the set of all sequences Sy of type g. For simplicity, we discretize ¢ to

finite precision.

1. What is the cardinality of Q(q) for ¢ = 0.2 and ¢ = 0.5 respectively? (Suppose we

only care about the exponential order or rate).



2. Suppose we know that the underlying probability is z; = 1 (or x; = 0) with prob-
ability p (or 1 — p respectively), by sampling from this probability N times, what
is the probability p(Sy) that we observe a sequence Sy € 2(q)? What is the total
probability mass p(2(g)) for all the sequences in set Q(q)?

3. In the above question, show that as N — oo, only sequences from the type p, i.e.

set 2(p), can be observed.



