Computer Vision I: Low-Middle Level Vision Homework Exercise \#2
 (total 10 points)

Due: November 28th 11:59 PM.
Problem 1 (Minimax entropy learning, 3 points).
This question aims to refresh the proof process in minimax entropy learning. Let $p(\mathbf{I})$ be a FRAME model with K histograms matched to the underlying model $f(\mathbf{I})$

$$
\begin{equation*}
p(\mathbf{I} ; \Theta)=\frac{1}{Z(\Theta)} \exp \left\{-\sum_{i=1}^{K}<\lambda_{i}, H_{i}(\mathbf{I})>\right\} \tag{1}
\end{equation*}
$$

The parameter $\Theta=\left(\lambda_{1}, \ldots, \lambda_{K}\right)$ is learned so that the following constraints are satisfied.

$$
\begin{equation*}
E_{p}\left[H_{i}(\mathbf{I})\right]=E_{f}\left[H_{i}(\mathbf{I})\right]=h_{i}, \quad i=1,2, \ldots, K . \tag{2}
\end{equation*}
$$

- Q1: Derive the following equation:

$$
\frac{\partial \log Z}{\partial \lambda_{i}}=-E_{p}\left[H_{i}(\mathbf{I})\right] .
$$

- Q2: Let $\ell(\Theta)$ be the log-likelihood for one observed image $\mathbf{I}^{\text {obs }}$, prove that

$$
\begin{align*}
\frac{\partial^{2} \ell(\Theta)}{\partial \lambda_{i} \partial \lambda_{j}} & =-\frac{\partial^{2} \log Z}{\partial \lambda_{i} \partial \lambda_{j}} \tag{3}\\
& =-E_{p}\left[\left(H_{i}(\mathbf{I})-h_{i}\right)\left(H_{j}(\mathbf{I})-h_{j}\right)\right], i, j \in\{1,2, \ldots, K\} \tag{4}
\end{align*}
$$

comment: Thus the second derivative of $\ell(\Theta)$ is a negative covariance matrix. So $\ell(\Theta)$ has a single maximum solution.

Now suppose we extract a new feature from the dictionary $F_{+} \in \Delta$, and augment the model to

$$
\begin{equation*}
p_{+}\left(\mathbf{I} ; \Theta_{+}\right)=\frac{1}{Z\left(\lambda_{+}\right)} \exp -\sum_{\alpha=1}^{K}<\lambda_{\alpha}^{*}, H_{\alpha}(\mathbf{I})>-<\lambda_{+}, H_{+}(\mathbf{I})> \tag{5}
\end{equation*}
$$

The new parameter $\Theta_{+}=\left(\lambda_{1}^{*}, \ldots, \lambda_{K}^{*}, \lambda_{+}\right)$is learned to not only satisfy the K constraints specified in equation (2), but also an extra condition:

$$
\begin{equation*}
E_{p_{+}}\left[H_{+}(\mathbf{I})\right]=E_{f}\left[H_{+}(\mathbf{I})\right]=h_{+} . \tag{6}
\end{equation*}
$$

Note: To match all the $K+1$ statistical constraints, the existing parameters $\left(\lambda_{\alpha} \rightarrow\right.$ $\left.\lambda_{\alpha}^{*}, i=1,2, \ldots, K\right)$ must be updated when we introduce new features (marginal) because all features are correlated.

- Q3: Derive the steps for proving the following theorem

$$
K L(f \| p)-K L\left(f \| p_{+}\right)=K L\left(p_{+} \| p\right)
$$

Problem 2 (Learning by information projection, 2 points)
Suppose that we are learning the underlying probability model $f(\mathbf{I})$ of image \mathbf{I}. We start with an initial probability model, denoted as $q(\mathbf{I})$, and observe that $q(\mathbf{I})$ has a different marginal probability over a macroscopic feature $H_{i}(\mathbf{I})$:

$$
E_{q}\left[H_{i}(\mathbf{I})\right] \neq E_{f}\left[H_{i}(\mathbf{I})\right]=h_{i},
$$

where h_{i} is estimated from a set of examples sampled from $f(\mathbf{I})$. To improve the current model, we learn a new probability model $p(\mathbf{I})$ so that it reproduces this marginal statistics feature ($p(\mathbf{I})$ may not necessarily replicate all the marginal probabilities that model $q(\mathbf{I})$ has matched previously). We denote the set of models that satisfy this constraint equation by,

$$
\Omega_{i}=\left\{p: E_{p}\left[H_{i}(\mathbf{I})\right]=E_{f}\left[H_{i}(\mathbf{I})\right]=h_{i} .\right\}
$$

Now, among all the $p(\mathbf{I})$ in Ω_{i}, we choose one that is closest to $q(\mathbf{I})$ so that it preserves the learning history.

$$
p^{*}=\arg \min _{p \in \Omega_{i}} K L(p \| q)=\arg \min _{p \in \Omega_{i}} \int p(\mathbf{I}) \log \frac{p(\mathbf{I})}{q(\mathbf{I})} d \mathbf{I} .
$$

1. Derive the formula of $p(\mathbf{I})$ by leveraging the Euler-Lagrange equation (Tips: (I) constrained optimization).
2. Prove that $K L(f \| q)-K L(f \| p)=K L(p \| q)$. (Remark: Since $D(p \| q)>0, p$ is closer to f than q).
3. Show that this optimization satisfies the maximum entropy principle when $q(\mathbf{I})$ is a uniform distribution.

Problem 3 (Information projection, 3 points)
Considering the feature pursuit in a family of models,

$$
p_{0}(x) \rightarrow p_{1}(x) \rightarrow \cdots \rightarrow p_{K}(x) \quad \sim f(x) .
$$

where

$$
p_{K}\left(x ; \Theta_{K}\right)=\frac{1}{Z_{K}} \exp \left\{-\sum_{i=1}^{K} \lambda_{i} h_{i}(x)\right\} .
$$

For simplicity, we treat λ_{i} as a scalar rather than a vector.

In the minimax entropy process, when we add a new feature statistics $h_{K}(x)$, we need to update all the parameters $\lambda_{i}=1, \ldots, K$ in the new model $p_{K}\left(x ; \Theta_{K}\right)$ by MLE, so that all the K constraint equations are satisfied,

$$
E_{p_{K}}\left[h_{i}(x)\right]=h_{i}^{\text {obs }}, \quad i=1,2, \ldots, K .
$$

In a different method, we can pursue a series of models in the following way,

$$
q_{0}(x) \rightarrow q_{1}(x) \rightarrow \cdots \rightarrow q_{K}(x) \quad \sim f(x)
$$

with

$$
q_{K}(x)=\frac{1}{z_{K}} q_{K-1}(x) \exp \left\{-\beta_{K} h_{K}(x)\right\}
$$

In this model, β_{K} is decided by the new constraint

$$
E_{q_{K}}\left[h_{K}(x)\right]=E_{f}\left[h_{K}(x)\right] \approx h_{K}^{\mathrm{obs}}
$$

In comparison to the previous p-series, the q-series observes the constraints one-by-one, and fixes the previous parameters $\beta_{i}, i=1,2, \ldots, K-1$ when we learn β_{K}, i.e.

$$
q_{K}(x ;)=\frac{1}{z_{1} z_{2} \cdots z_{K}} q_{o}(x) \exp \left\{-\sum_{i=1}^{K} \beta_{i} h_{i}(x)\right\}
$$

1. For the q-series, derive the formula for $\frac{\partial \log z_{K}}{\partial \beta_{k}}$.
2. Suppose we denote by $Z_{K}=z_{1} z_{2} \cdots z_{K-1}$ as the normalizing function for $q_{K}(x)$, derive $\frac{\partial^{2} \log Z_{K}}{\partial \beta_{i} \partial \beta_{j}}, \forall i, j \leq K$.
3. Prove that $K L\left(f \| q_{K}\right)-K L\left(f \| q_{K+1}\right)=K L\left(q_{K+1} \| q_{K}\right) \geq 0$, and prove the q-series will converge to f

Problem 4 (Typical set, 2 points)
Suppose we toss a coin N times and observe a $0 / 1$ sequence (for head and tail respectively),

$$
S_{N}=\left(x_{1}, x_{2}, \ldots, x_{N}\right), \quad x_{i} \in\{0,1\}
$$

S_{N} is said to be of type q (i.e. the frequency of 1 is q in the sequence) with $q=\frac{1}{N} \sum_{i=1}^{N} x_{i}$.
Let $\Omega(q)$ be the set of all sequences S_{N} of type q. For simplicity, we discretize q to finite precision.

1. What is the cardinality of $\Omega(q)$ for $q=0.2$ and $q=0.5$ respectively? (Suppose we only care about the exponential order or rate).
2. Suppose we know that the underlying probability is $x_{i}=1$ (or $x_{i}=0$) with probability p (or $1-p$ respectively), by sampling from this probability N times, what is the probability $p\left(S_{N}\right)$ that we observe a sequence $S_{N} \in \Omega(q)$? What is the total probability mass $p(\Omega(q))$ for all the sequences in set $\Omega(q)$?
3. In the above question, show that as $N \rightarrow \infty$, only sequences from the type p, i.e. set $\Omega(p)$, can be observed.
