
Computer Vision I: Low-Middle Level Vision Homework Exercise #1

(total 10 points)

Due: October 17 11:59 PM.

These questions are designed for refreshing math you learned in calculus and under-

standing the topics discussed in class. They are divided into smaller steps for you to walk

through. Each step needs no more than 5 lines of proof, so don’t get too complicated.

Question 1. (4 points) This exercise shows that the 1/f-power law observed in natural

images can be explained by a simple Markov Random Field MRF model.

Let I be an image in a continuous 2D plane (It is neat to prove this in continuous

form, discrete lattice will be messy), its Fourier transform is,

F (I) = Î(ξ, η) =

∫ ∫
I(x, y)e−i2π(xξ+yη)dxdy.

A2(ξ, η) = |Î(ξ, η)|2 is the “power” of the signal at frequency component (ξ, η). We

consider a MRF model with a quadratic potential H(I).

p(I) =
1

Z
e−H(I), H(I) = β

∫ ∫
(∇xI(x, y))2 + (∇yI(x, y))2dxdy.

where ∇xI(x, y) = ∂I(x,y)
∂x and ∇yI(x, y) = ∂I(x,y)

∂y are the gradient images. For boundary

condition, the image I(x, y) is assumed to have zero intensity at infinity or to be defined

on a torus.

1. Show the Fourier transform of two gradient images∇xI(x, y) and∇xI(x, y) are 2πiξÎ

and 2πiηÎ respectively. That is,

F (∇xI) = 2πiξÎ, F (∇yI) = 2πiηÎ.

(Hint: this is the so-called Integration by Part in calculus).

2. Show that for any function g(t) and its Fourier transform G(ξ), we have∫
g(t)2dt =

∫
G(ξ)∗G(ξ)dξ

G(ξ)∗ is the conjugate of G(ξ) (as it is a complex number). Intuitively, the Fourier

transform does not change the norm of a vector or function. (Hint: The proof

involves switching the order of integration variables.)
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3. By combining the previous two steps, show

H(I) = 4π2β

∫ ∫
(ξ2 + η2)|Î(ξ, η)|2dξdη.

What is the mean and variance for each component Î(ξ, η)?

Remark: In I, each pixel intensity I(x, y) is correlated with each its neighbours, now

in Î, each component Î(ξ, η) is independent of other component Î(ξ′, η′). it is like

to be diagonalized in discrete covariance matrix in lecture.

Therefore the variance of each Fourier component Î(ξ, η) is

Ep[|Î(ξ, η)|2] =
C

ξ2 + η2

Then we see that A(f) follows the 1/f law, where f =
√
ξ2 + η2 is the frequency.

4. Derive the constant C above, and prove that the image has constant power A2(f) at

each frequency band [f, 2f ], as you observed in project 1. Explain in plain language

why images in this ensemble have invariant expected power-spectrum over scales

(frequency bands).

Remark. This problem shows that the image ensemble defined by the MRF model p(I) above

has exact 1/f power. As we will show in lecture, it is a maximum entropy probability, it

observes the 1/f-law as its sufficient statistics !

Question 2 (3 points). The goal of this exercise is to show the connection between

the Gibbs/MRF model and partial differential equations (PDEs) for image processing.

Consider the continuous Gibbs/MRF model for a system in problem 1 again with potential

function,

H(I(x, y)) =

∫ ∫
(∇xI(x, y))2 + (∇yI(x, y))2dxdy.

This is the so-called functional (H is a function of function I, and I is a function of position

(x, y)).

Suppose we minimize the potential H(I) by gradient descent. The dynamic of the

system state is an image sequence I(x, y, t) showing the state changes over time,

dI(x, y, t)

dt
= −δH(I(x, y, t))

δI)
, ∀x, y.

The right side is the derivative from variational calculus (See hint below). t is the time

step. This leads to a partial differential equations (PDEs) for the system dynamics.
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1. By variational calculus using the Euler-Lagrange equation, show that the PDE above

is the classic heat-diffusion equation.

dI(x, y, t)

dt
= ∆I(x, y), or It = Ixx + Iyy.

where ∆ = ∂2

∂x2
+ ∂2

∂y2
is the Laplacian operator.

2. Rewrite the energy H(I) in discrete form: replace the integral by summation, and

the gradients by difference ∇xI(x, y) = I(x+ 1, y)− I(x, y). The derive the discrete

diffusion equation for updating I(x, y, t) using the conventional gradient descent

equation.
dI(x, y, t)

dt
= −dH(I(x, y, t)

dI
.

This actually should be a discrete form of the heat diffusion equation.

3. Suppose we use periodical boundary condition (torus), what is the image I(x, y, t)

as t→∞.

Remark: if we re-express the function H in the Fourier form as we did in Qestion 1.3.

You can see the other way for minimizing H in the Fourier domain. Actually, Fourier

transform was first invented by Joseph Fourier in 1822 to solve the heat diffusion equa-

tions. Read some background in wikipedia. In future lectures, we will see how we learn the

potentials in general form and then derive system dynamics in general.

Variational Calculus: Suppose we are minimizing a functional with respect to a function

f(x)

E(f(x)] =

∫
L(f(x), ḟ(x))dx

The Euler-Lagrange equation for the minimum is

δE

δf
=

∂L

∂(f)
− d

dx
(
∂L

∂ḟ
) = 0

You may find some on-line tutorial on the Euler-Lagrange equation, especially for f(x) that

has multiple variables x = (x1, ..., xn). In the above question, we treat the image I(x, y)

as a continuous function and H(I) is a functional. In computer vision, the variational

methods (PDEs) often switch to a continuous domain to derive the equations and then

switch back to discrete lattice for implementation.

Question 3 (A scale invariant world, 3 points). Consider a toy world which consists

of only line segments. In an image, a line segment is represented by its center (xi, yi),

orientation θi and length ri. The line segments are independently distributed with uniform
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probability for their centers and orientations. The length follows a probability p(r). We

denote by λ(a, b, A) the number of line segments with length r ∈ [a, b] whose center falls

inside an area A. Note that we assume the image is defined on a continuous 2D domain

and the line segment has zero width (when you down scale the image, the width of the

line does not change).

When we scale the image by a factor s, then the line segment will be scaled from length

r to sr. Suppose that the image ensemble is scale invariant, that is, at any scale s, within

a unit area, we always observe the same number (on average) of line segments with length

r.

1. Show that λ(a, b, A) = 4λ(2a, 2b, A). [Hint: by direct argument].

2. Use the above equation, then show that for any interval [a, b],∫ b

a
p(r)dr = s2

∫ sb

sa
p(r)dr.

3. Set a = ao a constant, and b = r a variable, from the above equation show p(r) =

s3p(sr), then p(r) = c
r3

.

Remark: This question proves that we will see a scale invariant world if the length of the

line segments follows a distribution C/r3!
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