Computer Vision I: Low-Middle Level Vision Homework Exercise #1
(total 10 points)
Due: October 17 11:59 PM.

These questions are designed for refreshing math you learned in calculus and under-
standing the topics discussed in class. They are divided into smaller steps for you to walk

through. Each step needs no more than 5 lines of proof, so don’t get too complicated.

Question 1. (4 points) This exercise shows that the 1/f-power law observed in natural

images can be explained by a simple Markov Random Field MRF model.

Let I be an image in a continuous 2D plane (It is neat to prove this in continuous

form, discrete lattice will be messy), its Fourier transform is,
F(I)=1(&n) = //I(x, y)e T @ERY) ddy.

A%(¢n) = |f(§,n)|2 is the “power” of the signal at frequency component (£,7). We
consider a MRF model with a quadratic potential H (I).

PO = e HD) =5 [ [(V.1w9)? + (V1)) dody.

where V, I(z,y) = % and V, I(z,y) = algzy) are the gradient images. For boundary
condition, the image I(x,y) is assumed to have zero intensity at infinity or to be defined

on a torus.

1. Show the Fourier transform of two gradient images V,I(x,y) and V,I(z,y) are omicl
and 27ri?7f respectively. That is,

F(V,I) =2micl, F(V,I) = 2minl.
(Hint: this is the so-called Integration by Part in calculus).

2. Show that for any function ¢(t) and its Fourier transform G(¢), we have

[owiat= [ Geraga

G(&)* is the conjugate of G(&) (as it is a complex number). Intuitively, the Fourier
transform does not change the norm of a vector or function. (Hint: The proof

involves switching the order of integration variables.)



3. By combining the previous two steps, show
Hm = ar26 [ [(€+)|i(€ ) Pdgdn.

What is the mean and variance for each component 1(£,7)?

Remark: In 1, each pizel intensity I(x,y) is correlated with each its neighbours, now
n f, each component f(f,n) is independent of other component f(g’,n/). it 1s like

to be diagonalized in discrete covariance matrix in lecture.

Therefore the variance of each Fourier component f(g, n) is

C

Ey[lI(&n)*] = e

Then we see that A(f) follows the 1/f law, where f = /&2 + n? is the frequency.

4. Derive the constant C' above, and prove that the image has constant power A?(f) at
each frequency band [f,2f], as you observed in project 1. Explain in plain language
why images in this ensemble have invariant expected power-spectrum over scales

(frequency bands).

Remark. This problem shows that the image ensemble defined by the MRF model p(I) above
has exact 1/f power. As we will show in lecture, it is a maximum entropy probability, it

observes the 1/f-law as its sufficient statistics !

Question 2 (3 points). The goal of this exercise is to show the connection between
the Gibbs/MRF model and partial differential equations (PDEs) for image processing.
Consider the continuous Gibbs/MRF model for a system in problem 1 again with potential

function,

H(I(wy) = [ [(VoI@.9))? + (V,1a.p)*dudy.
This is the so-called functional (H is a function of function I, and I is a function of position

(2,9))-
Suppose we minimize the potential H(I) by gradient descent. The dynamic of the
system state is an image sequence I(x,y,t) showing the state changes over time,
di(z,y,t) _ dH((z,y,t))

R s

The right side is the derivative from variational calculus (See hint below). t is the time

step. This leads to a partial differential equations (PDEs) for the system dynamics.



1. By variational calculus using the Euler-Lagrange equation, show that the PDE above
is the classic heat-diffusion equation.

dI(z,y,t)

o =Al(z,y), or I;=I,,+1,.

where A = % + g—;g is the Laplacian operator.

2. Rewrite the energy H(I) in discrete form: replace the integral by summation, and
the gradients by difference V,I(z,y) = I(z + 1,y) — I(z,y). The derive the discrete
diffusion equation for updating I(x,y,t) using the conventional gradient descent
equation.

dl(z,y,t)  dH(I(x,y,t)

dt dl

This actually should be a discrete form of the heat diffusion equation.

3. Suppose we use periodical boundary condition (torus), what is the image I(x,y,t)

as t — oo.

Remark: if we re-express the function H in the Fourier form as we did in Qestion 1.3.
You can see the other way for minimizing H in the Fourier domain. Actually, Fourier
transform was first invented by Joseph Fourier in 1822 to solve the heat diffusion equa-
tions. Read some background in wikipedia. In future lectures, we will see how we learn the

potentials in general form and then derive system dynamics in general.

Variational Calculus: Suppose we are minimizing a functional with respect to a function
f(x)
E(f@)] = [ L(f(@). fx)da
The Euler-Lagrange equation for the minimum is

oF oL d OL

57 o) ds'of

You may find some on-line tutorial on the Euler-Lagrange equation, especially for f(x) that

) =0

has multiple variables © = (x1,...,x,). In the above question, we treat the image 1(z,y)
as a continuous function and H(I) is a functional. In computer vision, the variational
methods (PDEs) often switch to a continuous domain to derive the equations and then

switch back to discrete lattice for implementation.

Question 3 (A scale invariant world, 3 points). Consider a toy world which consists
of only line segments. In an image, a line segment is represented by its center (x;,y;),

orientation #; and length r;. The line segments are independently distributed with uniform



probability for their centers and orientations. The length follows a probability p(r). We
denote by A(a, b, A) the number of line segments with length r € [a, b] whose center falls
inside an area A. Note that we assume the image is defined on a continuous 2D domain
and the line segment has zero width (when you down scale the image, the width of the
line does not change).

When we scale the image by a factor s, then the line segment will be scaled from length
r to sr. Suppose that the image ensemble is scale invariant, that is, at any scale s, within
a unit area, we always observe the same number (on average) of line segments with length

r.

1. Show that A(a,b, A) = 4\(2a,2b, A). [Hint: by direct argument].

2. Use the above equation, then show that for any interval [a, b],

/abp(r)dr = /:bp(r)dr.

a

3. Set a = a, a constant, and b = r a variable, from the above equation show p(r) =

C

s°p(sr), then p(r) = 5.

Remark: This question proves that we will see a scale invariant world if the length of the

line segments follows a distribution C/r3!



