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Abstract

Understanding the behavior of primates is a long-standing and critical task for
multiple disciplines. Although recent advances in deep learning provide a new
paradigm for handling this task, most existing methods only leverage simple ar-
chitecture such as CNN. In this report, we address three representative tasks on
primates: detection, identification, and pose estimation. We explore multiple archi-
tectures and build strong baselines. Based on these baselines, we introduce novel
approaches and achieve state-of-the-art results. Extensive experiments demon-
strate the superiority of our methods. All our code and results are available at
https://github.com/Red-Fairy/CV-project-22Fall.

1 Introduction

Understanding the behavior of primates is vital for primatology, psychology, and biology since
primates are important model organisms. The challenge of accurately measuring animal behavior has
been a longstanding issue, primarily due to the time and effort required for manual observation and
the difficulties of long-term monitoring in natural environments. Recent advancements in technology,
such as computer vision, machine learning, and robotics, coupled with breakthroughs in deep learning,
have made it possible to track the behavior of primates through the use of CNN-based software that
can identify objects in images.

The capability of automatically monitoring and analyzing primate behavior will significantly assist
researchers in cognitive science. To achieve this, when given a video of wild chimpanzees that have
some annotations, the first step is to identify all the individuals by their location, identity, and activity
through detection, identification, and 2D pose estimation. After that, it will be possible to create a
quantitative representation of the social network and infer the social connections among the primates.

Therefore, we address these representative tasks on primates in this report. An illustration to these
tasks is shown in 1. Unlike existing methods [30] only leverage simple architecture such as CNN, we
explore more advanced techniques, including YOLO [16], contrastive learning [3], MacaquePose [21],
etc. We build solid baselines upon these novel approaches. Afterwards, we present our improvenets
to these baselines and demonstrate the effectiveness of our methods through extensive experiments.

The remainder of this report will be organized as follows: Sec. 2 presents the related works of the
three tasks involved. Sec. 3 to Sec. 5 comprehensively describes the baselines and our method for
detection, identification, and pose estimation. Experimental results and analysis of the results will be
given in Sec. 6. Finally, Sec. 7 presents the conclusions and discussion of future works.

2 Related Works

2.1 Object Detection

The task of object detection is to find all interested objects in the image and determine their categories
and positions, which is one of the core issues in computer vision. R-CNN [29] is the first algorithm
that successfully applies deep learning to detection, extracting features from candidate regions for
judgment using a CNN architecture. Fast R-CNN [10] optimizes the repeated computation when
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Figure 1: An illustration to the tasks involved in this report.

R-CNN performs feature extraction for all regions, improving the performance. Faster R-CNN [31]
adds a neural network to find interested areas, further reducing the time consumption of the model.
YOLO [16] uses the idea of regression, uses the whole picture as the network’s input, and directly
returns the bounding boxes and the categories of the objects on multiple positions of the image.

2.2 Identification

Long-tail Classifcation. Training samples typically exhibit a long-tailed inter-class distribution in
real-world applications, including primate identification, where a small portion of classes accounts
for the majority of sample points. Such class imbalance of training samples could make training
vanilla-supervised deep networks challenging. Existing methods of long-tailed learning can be
classified into class re-balancing, data augmentation, and representation learning. Class re-balancing
methods [23, 18] utilize re-sampling techniques to guarantee a balanced sample size during training.
Logit adjustment operations [22] are also considered. Data augmentation methods [42, 6, 26] aim to
enhance the size and quality of the dataset. Representation learning methods [8, 14, 40, 43, 17] aim
at designing loss metrics (e.g., contrastive loss [43, 17]) for establishing similarity or dissimilarity
between classes. Interesed readers may refer to [41] for comprehensive surveys.

As for the primate identification task, both the training and testing sets follow the long-tailed distribu-
tion. Data scarcity is also a problem. Therefore, simple re-sampling methods may not work well as
they may bring discrepancies between the train and test distributions. Based on the characteristics of
the task, we propose a method compound method that enjoys the merits of three kinds of methods,
thus achieving satisfactory results.

Contrastive Learning. Contrastive learning [3, 13] is a popular self-supervised learning paradigm
that contrasts positive and negative image pairs. Given a mini-batch X , we draw two positive samples
x, x+ for each x̄ ∈ X following the augmentation distribution A(·|x̄), and draw M independent
negative samples {x−

m}Mm=1 from the marginal distribution A(·) = Ex̄A(·|x̄). Then, we train an
encoder g : X → Z by the widely adopted InfoNCE loss [25] using the augmented data pair
(x, x+, {x−

m})

LNCE(x, x
+, {x−

m}; g) = − log
exp(sim(g(x), g(x+))/τ)∑
m exp(sim(g(x), g(x−

m))/τ)
, (1)

where sim(·, ·) is the cosine similarity between two vectors, and τ is a temperature hyperparameter.
Although designed for self-supervised settings, recent literature [43, 19] has extended contrastive
learning to supervised scenarios when labels are available.

2.3 Pose Estimation

Pose estimation problems can be divided into two main categories: 2D pose estimation and 3D pose
estimation. As the name implies, the former predicts a 2D coordinate for each key point; the latter
predicts a 3D coordinate for each key point, adding one-dimensional depth information. For 2D pose
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estimation, most current research is on multi Person pose estimation, i.e., each image may contain
more than one person. There are usually two types of ideas to solve the problem: top-down and
bottom-up.

Top-down Approaches. In conjunction with recent classic work [27, 9, 12, 5, 38, 32], the idea of
top-down is to first perform target detection on the image to find all the people (obtain the bounding
box for each people); then crop the people out of the original image, resize them and input them
to the network for pose estimation. In other words, top-down transforms the problem of multi-
person pose estimation into a problem of multiple single-person pose estimation. Mask R-CNN[12]
adds a pose estimation module for end-to-end training. Fang et al. [9] optimizes the problem of
inaccurate bounding box search using transformer architecture. PandaNet [1] uses the anchor-based
method to improve the 3d pose estimation method. Chen et al. [5] uses different networks to
process different information. Specifically, they use two networks to process coarse-grained and
fine-grained information separately and eventually integrate them, ensuring the information’s integrity
and allowing for increased accuracy and generalization. Sun et al. [32]’s approach is multi-stage, and
they mainly use high resolution networks for pose estimation optimization. The primary consideration
is preventing information loss during high and low resolution changes. The constant fusion allows
for better retention of detailed information. Bertasius et al. [2] propose to not only learn in images
but also about changes and relationships in time series from videos to acquire better pose estimation
skills.

Bottom-up Approaches. Bottom-Up Approaches, i.e., part-based frameworks, first detect each
key part of the human body and then stitch the detected parts together to form a human figure.
The disadvantage is that different parts of different people are stitched together as one person.
Representative methods [4, 11, 35, 28, 15, 20, 33] often sacrifice accuracy but increase processing
speed. Another feature of these methods is that they are very sensitive to the size of the human sample
in the picture, and as there is no function to reset the size of the individual, it often introduces a high
level of error when the proportion of the human body is very small and even fails to recognize the
human pose.

One-stage Approaches. In addition to top-down and bottom-up approaches, there are other meth-
ods [39, 24, 34, 37] that are not two-stage. Specifically, instead of first detecting the body’s key
points, they locate the body and detect the key points simultaneously, which can increase efficiency.
However, because of the complexity of the representation, their accuracy is similar to that of the first
two approaches.

Pose Estimation for Primate Since the application scenario for pose estimation in animals is
different from human pose estimation, there needs to be more mature and complete work on primates.
In recent years, as wildlife conservation and monitoring have become more sophisticated, there
are many artificial intelligence algorithms dedicated to wildlife. Among them, MacaquePose [21]
annotates all kinds of primates’ poses. Based on this, mmpose [7] also provides some corresponding
training models.

3 Detection

The goal of detection is to train a model to judge whether there are chimpanzees in the input image
by giving confidence scores and bounding boxes indicating the specific locations of the chimpanzees.

3.1 Data Collection

A total of 1351 images and corresponding bounding boxes are given in the whole data set, including
1251 images as the training set and 100 as the test set.

3.2 Data Cleaning

In the whole dataset, there are no chimpanzees in some images. The label textfiles corresponding to
these images are empty, and these data cannot participate in the training process. We scan all the label
text files, delete the empty text files, and delete the images with the same name to get a clean data set.
After cleaning the data, 1188 images remain in the training set, and 94 images remain in the test set.
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Figure 2: Pipeline of primates detection.

3.3 Method

To solve this detection problem, we used the open-source yolov5s model for training, using SGD as
the optimizer in the training process. Input the images into the model, and we can get the bonding
boxes and confidence scores of different chimpanzees from different outputs of the model. The
pipeline of our detection module is shown in Figure 2. This section will introduce some of our
optimization points based on the original model.

Number of Training epochs. Considering that the data in the training set is not so large and the
model’s initial number of training epochs is as significant as 300, the model may be overfitting.
Therefore, after the end of each training epoch, we calculate the mAP of the current model on
the test set. After that, for each epoch, we calculate the average value of mAP of five models on
the test set obtained from this epoch and the past two and the last two epochs. When the training
reaches 90 epochs, we can get the maximum average value of mAP, demonstrating the conjecture of
model over-fitting. So we changed the number of training epochs to 90, which improved the model’s
performance. Results are shown in Sec. 6.1.

Size of the model. The network we originally trained uses the yolov5s architecture. The model’s
size is small, and the model’s ability to extract features from the input is limited. So we used yolov5m
and yolov5l for training, respectively. For each model, the optimization method of the number of
training epochs is the same as yolov5s.

4 Identification

The goal of identification is to train a neural network that can predict the correct identity of a primate
given its image.

4.1 Data Collection

The training set for the identification task includes 662 images; each corresponds to a bounding box
given in the original training set. The test set contains 275 images and is gathered similarly. The
dataset contains 17 different individuals, i.e., a 17-class classification problem.

4.2 Method

The main difficulties of this task lie in the long-tailed distribution and label scarcity. Specifically, a
chimp named “Azibo” accounts for about 40% of all samples in the training set (Figure 3). In this
section, we introduce our novel framework to address such challenges.

Data Augmentation. Data augmentation is a widely applied technique to enhance the dataset’s
variety. However, fierce data augmentation will even bring performance degradation. There are several
reasons for this phenomenon. The first reason is the tightness of bounding box annotations, which
would make random cropping produce worse samples. The second reason is the train-test distribution
gap. Since the train-test distribution is almost identical, adding fierce augmentations would enlarge
such a gap and distort the semantics, thus harming the overall performance. We ablate the effect of
different data augmentations in Table 1 and show that only horizontal flip (default) benefits the overall
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Figure 3: Illustration on the training sample distribution.

Figure 4: Pipeline of the classification module.

performance under vanilla supervised learning settings. To solve such a problem, we propose a novel
strong-weak augmentation scheme where augmentation is drawn from two distinct augmentation
distributions.

Table 1: Ablation on the effect of each data augmentation. Default augmentation (horizontal flip) is used in
all experiments. Weak crop refers to resizing (256 × 256) and cropping (224 × 224); fierce crop refers to
“torchvision.transforms.RandomResizedCrop(224, (0.5, 1.0))”; color jitter uses parameter (0.2, 0.2, 0.2, 0.05);
the probability of applying grayscale is 0.2; the range of rotation is (−15◦, 15◦).

Augmentation default weak crop fierce crop color jitter grayscale rotation

Top-1 accuracy 82.18% 80.00% 78.91% 80.36% 82.55% 81.09%

Contrastive Learning. SCL [19] is a popular supervised contrastive learning framework. However,
as pointed out by [43], its loss function is unsuitable for long-tailed distribution. We additionally test
a supervised contrastive learning framework designed for long-tail distribution [43] and find its result
also limited. Therefore, we directly use the standard contrastive learning loss 1.

Multi-task Classification Module. Figure 4 demonstrates the Pipeline of our classification module.
Built upon a standard encoder (e.g., ResNet), our model jointly solves two tasks: (1) the label-
concerned contrastive learning task discussed above and (2) the standard classification task. Given
an input mini-batch X and two augmentation distribution Tstrong, Tweak, we draw three samples
for each x ∈ X . The first two samples are drawn from Tstrong and are used to calculate contrastive
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loss (LSupCL), while the third sample is drawn form Tweak and is used to calculate classification loss
(LCE).

The overall loss function of our classification module is formulated as follows:

Ltotal = λ · LSupCL + LCE, (2)

where λ is a weight parameter.

5 Pose Estimation

5.1 Primates Pose Estimation

MacaquePose. MacaquePose [21] provides pose annotation of primates. MacaquePose focuses
on 2D pose estimation of animals, including species such as chimpanzees, macaques, and others.
The images are partly taken from zoo shots and partly from data on the internet. The total number of
images, including annotations, is 13,083. Both in terms of number and species diversity, the objective
of training in pose estimation has been achieved.

Pre-trained Model. We utilize the top-down methods. We perform object detection first, followed
by single-object pose estimation given object bounding boxes. Instead of directly estimating keypoint
coordinates, the pose estimator will produce heatmaps representing the likelihood of being a key
point. We use the pre-trained model provided by mmpose [7] for testing and fine-tuning.

Network Architecture. We used ResNet and HRNet [35] as the network architecture of the
algorithm, and tried different depths for ResNet and different widths for HRNet. Our pipeline is
shown in Figure 5.

Figure 5: Pipeline of primates pose estimation.

5.2 Human-to-Primates Pose Estimation

As the application scenario for human pose estimation is much broader than for primate pose
estimation, the dataset for human pose annotation is much larger, and related work is increasing. We
may therefore be able to learn primate pose estimation with the help of fine-tuning, Few-shot, or
transfer learning based on a human 2D pose estimation model. The pipeline is shown in Figure 6.

Due to time constraints, we have only tried this method initially. We first obtain a pre-trained 2d
human pose estimation model and fine-tune it on our dataset. The AP achieved when putting the
pre-trained model directly into our test set is only 27.5%, while after fine-tuning, the AP reaches
31.3%.

We found that the accuracy of using the pre-trained model directly is very low and has been improved
by fine-tuning. However, there is a huge difference between human and animal appearance, and the
overall success rate is still unsatisfactory.

6 Experiments

6.1 Detection

Baseline. We use yolov5s as the original architecture. Table 2 is the test results of the model after
300 epochs of training.

6



Figure 6: Pipeline of Human-to-Primates pose estimation.

Table 2: Test results of the original model

Architecture Training Epochs P R mAP50

yolov5s 300 0.874 0.786 0.871

Different numbers of training epochs. We change the number of training epochs according to
the optimization method in section 3.3. Table 3 shows the results before and after optimization. The
optimization of the number of training epochs has significantly improved the performance of the
model. The problem of over-fitting is partly alleviated.

Different model sizes. We optimized the size of the model according to the method in section 3.3.
Table 4 is the test results of the models with the architecture of yolov5s, yolov5m and yolov5l on
the test set. It can be seen that increasing the size of the model can improve the performance of the
model. Specific information of different models are shown in Table 5.

6.2 Idenfication

Baselines. We use vanilla supervised learning with no data augmentation as the baseline. For fair
comparisons, all models share the ResNet-18 architecture. Training lasts for 50 epochs with Adam
optimizer and cosine learning rate scheduler. The initial learning rate is set to 1e-4.

Implementation Details. In our method, Tweak consists of mild resized crop and horizontal flip,
while Tstrong consists of the resized crop, horizontal flip, color jitter, and random rotation. The
projection head is an MLP with one hidden layer.

Benchmarking Results and Ablations. Table 6 shows the benchmarking results. Compared with
the no augmentation baseline, our method improves the identification accuracy by 3.27% (from
82.18% to 85.45%). Under the contrastive learning paradigm, we compare our approach (multi-task,
MT) with pretrain+finetune (PF). Our multi-task design yields a performance gain of 2.18%. These
results justify the superiority of our proposed method.

6.3 Pose Estimation

Metrics. Keypoint Detection uses a metric called Object Keypoint Similarity (OKS) to quantify
the closeness of the predicted keypoint-location with the ground-truth keypoint. This metric ranges
between 0 and 1. The closer the predicted key point to the ground truth, the closer will OKS approach
1. The formula is as follows:

OKS = exp(− d2i
2s2k2i

)

Table 3: Test results of the models before and after the optimization of number of training epochs

Architecture Training Epochs P R mAP50

yolov5s 300 0.874 0.786 0.871

yolov5s 90 0.886 0.821 0.887
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Table 4: Results of detection of models with different sizes

Architecture Training Epochs P R mAP50

yolov5s 90 0.886 0.821 0.887

yolov5m 67 0.865 0.812 0.889

yolov5l 40 0.852 0.845 0.890

Table 5: Sizes of different models

Architecture params(M) FLOPs(B)

yolov5s 7.2 16.5

yolov5m 21.2 49.0

yolov5l 46.5 109.1

Where di is the Euclidean distance between the predicted and ground truth, s is the object’s scale,
and ki is a constant for a specific key point.

OKS is a metric value for objects. After the calculation of OKS, it plays the same role as the IOU
inside the target detection so that we can set the threshold filter, then we get our Average precision(AP)
and average recall(AR) metrics: AP , AP50, AP75, AR, AR50. The result can be found in Table 7.

Network Architecture. We used ResNet and HRNet [36] as the network architecture of the
algorithm, and tried different depths for ResNet and different widths for HRNet.

Ablation Study. We compare our method with some ablation methods, including Ours w/o Aug-
mentation and Ours w/o Fine-tuning. As shown in Table 8, we can observe that our method is better
than the other two methods.

7 Conclusion

In this report, we explore three representative tasks on primates. We reproduce multiple baselines and
present novel approaches towards these tasks. Extensive experiments demontrate the superiority of
our methods.
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Table 6: Benchmarking results and ablations for the classification task.

Method \ Augmentation weak strong strong&weak (proposed)

Baseline (vanilla supervised) 82.18% 77.09% N/A
Multitask (proposed) 82.91% 77.45% 85.45%

Method supervised contrastive-PF contrastive-MT (ours)

Top-1 accuracy 82.18% 83.27% 85.45%

Table 7: Average precision(AP) and average recall(AR) of pose estimation with different network architectures
and network parameters.

Architecture AP AP50 AP75 AR AR50

ResNet-50 0.489 0.672 0.629 0.527 0.664

ResNet-101 0.500 0.638 0.602 0.515 0.668

ResNet-152 0.499 0.667 0.625 0.552 0.672

HRNet-w32 0.510 0.655 0.620 0.560 0.671

HRNet-w48 0.514 0.666 0.614 0.560 0.665

Table 8: Ablation Study for average precision(AP) and average recall(AR) of pose estimation.

Method AP AP50 AP75 AR AR50

Ours 0.514 0.666 0.614 0.560 0.665

Ours w/o Augmentation 0.496 0.649 0.602 0.530 0.666

Ours w/o Fine-tuning 0.392 0.550 0.512 0.448 0.560
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