
NeRF Project Report

Tianyi Sun
Department of Electrical and Computer Engineering

Peking University
1900012920@pku.edu.cn

Peiheng Wang
Department of Electrical and Computer Engineering

Peking University
1900012916@pku.edu.cn

Hongbo Ning
Department of Electrical and Computer Engineering

Peking University
1800017711@pku.edu.cn

Abstract

NeRF is effective in synthesizing novel views of complex scenes by optimizing
an underlying continuous volumetric scene function using a sparse set of input.
Based on NeRF, two types of dynamic NeRF were proposed to incorporate the time
dimension. One method is to add time dimension directly into the basic NeRF, while
another one is to construct two networks dealing with deformation and canonical
information respectively. However, the training of present models, whether for
static or dynamic scenes, is time-consuming and presents low-resolution results
when not well-trained. Here we show our methods to achieve better training effects
with less time consumption based on our understanding of the current NeRF
and its implementation in dynamic scenes. We implement two novel kinds of
method to achieve data argumentation by improving the sampling process. One
is guided by loss function and another is instructed by intuitive moving regions
segmentation. Our method may contribute to the faster training of NeRF or enhance
the performance of NeRF with limited training consumption.

1 Introduction

NeRF is effective in synthesizing novel views of complex scenes by optimizing an underlying
continuous volumetric scene function using a sparse set of input [2]. Based on NeRF, two types
of dynamic NeRF were proposed to incorporate the time dimension. One method is to add time
dimension directly into the basic NeRF, making the network keep information in both time and space
dimensions [1]. Another one is to construct two networks, one for canonical NeRF, memorizing the
original space information, another Φt for deformation presenting the offset of each sample point
along the sample ray between the first and the t moment [3]. We compare the two methods and
analyze its effect.

In Sec. 2, we implement a 2D-NeRF to fit a single image with positional encoding. In Sec. 3, we
implement a NeRF and fit on multi-view images. In Sec. 4, we implement two types of NeRF for
dynamic scenes. In Sec. 5, we propose a new sampling method based on D-NeRF to generate results
with better perspective quality with the same iterations. In Sec. 6, we utilize the two types of dynamic
NeRF for data augmentation and segment dynamic parts from static parts. Based on our understanding

1



(a) Subfigure 1. original. (b) Subfigure 2. ours.
Figure 1: A comparison between the original picture and the corresponding reconstruction of the best model
with 5 layers, 1024 dimensions, 10 frequencies and with positional embedding, which are similar to each other.

of the current NeRF and its implementation in dynamic scenes, we propose our methods to achieve
better training effects with less time consumption.

2 Fit a single image with positional encoding

We write a program according to the instruction and train separate models with different layers,
dimensions, frequencies and with or without positional embedding. All models are trained on the
picture in Fig. 1a for 40 epoches. We show the results in Tab. 1. With more layers, more dimensions,
larger frequency and with positional embedding, we obtain better results. The removal of positional
embedding has the most significant effect, with a drop of 7.35 in PSNR. The reconstruction of the
best model with 5 layers, 1024 dimensions, 10 frequencies and with positional embedding is shown
in Fig. 1b, which is similar to the original picture Fig. 1a.

Table 1: PSNR results of separate models with different layers, dimensions, frequencies and with or without
positional embedding trained on a single image.

layers dimensions freq positional_embedding psnr

3 1024 10 TRUE 78.5557

4 1024 10 TRUE 79.7047

5 1024 10 TRUE 80.081

4 64 10 TRUE 73.7507

4 256 10 TRUE 76.7787

4 1024 2 TRUE 73.5915

4 1024 5 TRUE 76.5248

4 1024 10 FALSE 72.3555

3 Implement NeRF and fit on multi-view images

3.1 Method

NeRF is a view synthesis method that renders new views of complex static scenes from various
perspectives by given a set of sparse views with known camera poses in a static scene. In this part,
we implement 3D-NeRF and 5D-NeRF including computing the origin and direction of camera rays,
sampling points along each camera ray, implementing the fully connected network architecture, and
volume rendering.

The vanilla NeRF accepts the location coordinates in the 3D scene and the 2D viewing direction
as input, maps the input to a high-dimensional space through positional encoding, and outputs the
emitted RGB radiance in the specified viewing direction and the volume density of the specified

2



point in the 3D scene through a fully connected network. Finally, the RGB value of each pixel in the
rendered view is calculated by volume rendering.Fig. 2 shows the network architecture of NeRF.

Figure 2: The fully-connected network architecture of 5D-NeRF. First, the input 3D coordinates are converted
into 60-dimensional vector by position encoding function γ(·). Then the positional encoding of the input location
is passed through 9 fully-connected layers, each with 256 channels, the last layer of the fully-connected layers
outputs the volume density without the input viewing direction. Finally, the 24-dimensional positional encoding
of the input viewing direction (γ(d)), the emitted RGB radiance is output through a small fully connected
network.

3.2 Evaluation

We train the 5D-NeRF with positional encoding for 140,000 iterations on the lego dataset, which
takes about 5 hours. Fig. 3 shows the changes in loss and PSNR on the training set during training.
The training set loss drops off rapidly in the first 50,000 iterations and tends to slow down after about
100,000 iterations. PSNR increases almost linearly with the number of training iterations. After about
100,000 iterations, the model has achieved a very good restoration effect on the Lego scene. Fig. 4
shows the new view that rendered by 5D-NeRF w/ positional encoding after 140k iterations and
ground truth camera view.

(a) Subfigure 1. Loss (b) Subfigure 2. PSNR
Figure 3: Loss and PSNR on the training set during training

We experiment with different model architectures and the use of positional encoding or not, we
trained 3D-NeRF with positional encoding, 5D-NeRF without positional encoding and 5D-NeRF
with positional encoding for 10000 iterations. (Where 3D-NeRF only accepts the input of location
coordinates without viewing direction; wo/ positional encoding means directly using 3D position
coordinates or viewing direction as input without using positional encoding.) We found that if the
3D coordinates are directly used as the fully-connected network input without using high-frequency
positional encoding, the rendered view will be too smooth and lose many detailed geometric structures
and textures, indicating that position encoding can effectively help the network learn true distribution
of the scene. And, using or not using the viewing direction as an additional input makes no significant
difference when there is no specular reflection.

3



(a) Subfigure 1. ours (b) Subfigure 2. GT
Figure 4: The view rendered NeRF after 140k iterations and the ground truth camera view.

(a) Subfigure 1. 5D wo/
positional encoding

(b) Subfigure 2. 3D w/ po-
sitional encoding

(c) Subfigure 3. 5D w/ po-
sitional encoding

(d) Subfigure 4. Ground
Truth

(e) Subfigure 5. 5D wo/
positional encoding

(f) Subfigure 6. 3D w/ po-
sitional encoding

(g) Subfigure 7. 5D w/ po-
sitional encoding

(h) Subfigure 8. Ground
Truth

Figure 5: The views rendered with different model architectures after training for 10k iterations

4 NeRF extension: NeRF for dynamic scenes

4.1 Description

To implement NeRF into dynamic scenes, there are two existing ideas. Firstly, time dimension could
be directly added into the basic NeRF, which means the new network could remember information
according to the input of both time and space indexs. Another one is to construct two network, one for
canonical NeRF, memorizing the space information, another Φt for deformation presenting the offset
of each sample point along the sample ray between the first and the t moment. The second idea use
Φt to calculate ∆x and use x+∆x as input to train the canonical NeRF. In this part, we implement
two ideas based on the NeRF code. Since the complete NeRF code wasn’t available due to Jan.18th,
we construct this part based on the open sourse code of D-NeRF and add into our implementation of
the first idea as Time-NeRF.

4.2 Evaluation

We train above two methods for 40,0000 iterations on NVIDIA GeForce RTX 3090, each taking about
19 hours. We compare the training process by their PSNR. (Fig. 6) After about 5,0000 iterations,

4



PSNR could reach a relatively high level(Fig. 7), and then slowly goes to convergence. According to
rendering test, Time-NeRF performs better than D-NeRF in PSNR and SSIM. It seems reasonable for
short-time and less-mobile data(dataset: lego). And according to Fig. 8, D-NeRF made great mistakes
between trailer’s shovel and body, while Time-NeRF performs relatively better with the same training
rounds.

(a) Subfigure 1. Time-NeRF/D-NeRF training com-
parision.

(b) Subfigure 2. D-NeRF PSNR with 20,000-100,000
iterations.

(c) Subfigure 3. Time-NeRF/D-NeRF PSNR. (d) Subfigure 4. Time-NeRF/D-NeRF SSIM.
Figure 6: Training and rendering test results of Time-NeRF/D-NeRF

(a) Subfigure 1. Time-NeRF rendering result. (b) Subfigure 2. D-NeRF rendering result.
Figure 7: The 13th frame of the video generated by models after training for 50,000 iterations.

5



(a) Subfigure 1. Time-NeRF. (b) Subfigure 2. D-NeRF.
Figure 8: The 1st frame of the video generated by models after training for 200,000 iterations.

5 Propose new ideas for dynamic nerf

Considering that some of the regions in the picture are smooth and easy to predict(e.g. the white
margin of the lego example), while others have complex texture, we sample at different rate according
to the PSNR. After training for 50000 iterations, we run the trained model on all the training set. We
calculate MSE for each 10x10 patch in all pictures. Pixels in a patch with MSE N times larger than
another patch has a N0.4 higher probability of being sampled. This method is similar to the idea of
Hierarchical volume sampling. We implement the method based on the DNeRF code written in Sec. 4.
Taken Fig. 10 as an example, Fig. 10a is a visualization of MSE0.4 and Fig. 10b is an example of
our sampling result. The black dots denote random samples according to the generated weights, so
samples concentrate around details.

Fig. 9 shows the PSNR for anchor method (i.e. DNeRF implemented in Sec. 4) and our method. For
both methods, we start from loading the pretrained model with 50000 iterations and continue training.
We validate both methods in 100000, 140000 and 190000 iterations on the test set. Unexpectedly,
PSNR goes down with larger iterations, though perception quality increases with iterations, which
may demonstrate that PSNR isn’t an ideal metrics. Our method performs worse than anchor method
in terms of PSNR. Then we evaluate the perspective quality of both methods in Fig. 11 and Fig. 12.
Our method shows better perspective quality, especially for details. So with our method, we can
obtain results with high resolution more quickly than anchor method, though the dropping PSNR has
to be solved in the future.

6 Delta-Improved Time-NeRF

6.1 Method

From the previous experiments, we come to following conclusions in dynamic scenes. First, both
models can reach relatively good perceptual effect within 50,000 iterations. Second, moving parts
have poor details which mainly impact the perceptual and quantitative performance a lot. Third, the
deformation model of D-NeRF tells apart the moving sections clearly as shown in Fig. 13. With these
observations, it comes to us another idea–using a pretrained deformation model to give moving parts
more weight in the process of ray sampling, using it as an induction to argument data.

We use a deformation model from D-NeRF pretrained for 50,000 iterations to get delta value of
images in the training set. Each pixel indicates a sample ray, each ray has equally spaced sample
points. We add its offset in three dimensions to get delta of each point and then sum all points’ delta
value along one ray as final delta value of a pixel. With a fine-tuned threshold, we could tell apart the
moving regions as Fig. 14 demonstrates. When sampling rays, in original method we choose pixels
randomly, while in our approach, we give large-delta area 50% possibility to be choosen and other

6



Figure 9: A comparison between the anchor method and our method in Sec. 5 after 100000, 140000 and 190000
iterations. Our method performs worse in terms of PSNR.

(a) Subfigure 1. A visualization of weight generated
by a pretrained model(i.e. MSE0.4). Mention that all
pictures showed in the paper are removed of much of
their margin for a more compact layout.

(b) Subfigure 2. An example of our sampling result.
The black dots denote random samples according to
the generated weights, so samples concentrate around
details.

Figure 10: An example for Sec. 5.

regions share another 50%. In this way, we can cover all regions in the image. If we only choose rays
in large-delta area, it will cause overfitting and bad perceptual effect on test set.

6.2 Impelmentation

The deformation model in D-NeRF displays the offset of sample points against their position at time
t0 as shown in Fig. 14, which performs great segmentation effect to tell apart static and dynamic part.
In our experiment, we use the deformation model of pre-trained D-NeRF (after 50000 iterations)
to segment parts with larger delta, shown as Fig. 14. Using the calculated delta values to guide the
sampling of training rays, we then train time-nerf for 200000 iterations with later 150000 iterations
implying the delta-guided sampling.

7



(a) Subfigure 1. anchor. (b) Subfigure 2. ours.
Figure 11: A comparison between the anchor method and our method in Sec. 5 after 100000 iterations. Our
method shows relatively better perceptual quality.

(a) Subfigure 1. anchor. (b) Subfigure 2. ours.
Figure 12: A comparison between the anchor method and our method in Sec. 5 after 140000 iterations. Our
method still shows relatively better perceptual quality and both methods show better perceptual quality than their
100000-iteration version.

6.3 Evaluation

For qualitative observation, we could see our method obtain better details in shovel part which is
also the moving part(Fig. 15), solving the question we raised before. The figure show the rendering
result of the same frame in the test set after the same rounds of iterations,the left one is the normal
Time-NeRF, the right one is our delta-improved method. The lego figure in the shovel part are more
clear in our method though still with some noise.

For quantitative results, our method shows 0.2 improvement in PSNR and steady increasement in
SSIM, both indicates effectiveness of our method(Fig. 17). As the ascending trend shown in the

(a) Subfigure 1. Frame N0.001 (b) Subfigure 2. Frame No.039.
Figure 13: The deformation model performs as segmentation method.

8



Figure 14: The green part indicates the moving regions of the tested frame against the 1st frame.

(a) Subfigure 1 Time-NeRF (b) Subfigure 2 Delta-Improved Time-NeRF
Figure 15: Details in shovel part–the moving regions of the trailer in dynamic scenes.

scatter plot, more training iterations may lead to better performance. In conclusion, adding more
weights to the moving region and at the same time giving enough weight to normal area appears as a
better sampling approach to synthesize novel views for dynamic scenes.

7 Contributions

This section states each author’s contributions. Peiheng Wang contributes to Sec. 4 and Sec. 6. Hongbo
Ning contributes to Sec. 3. Tianyi Sun contributes to Sec. 2 and Sec. 5.

8 Conclusion

Considering that the training of present models is time-consuming and presents low-resolution results
with poor details when not well-trained, we try methods to achieve better training effects with
less time consumption based on our understanding of the current NeRF and the extension method
proposed in dynamic scenes. We implement two novel kinds of data augmentation and gain better
perceptual quality with both methods and higher PSNR and SSIM with Delta-Improved Time-NeRF.

9



(a) Subfigure 1 time-NeRF (b) Subfigure 2 delta_improved_time_NeRF
Figure 16: Comparision of time-NeRF and delta-improved time-NeRF.

(a) Subfigure 1 Delta-Improved Time-NeRF PSNR (b) Subfigure 2 Delta-Improved Time-NeRF SSIM
Figure 17: Delta-Improved Time-NeRF PSNR/SSIM after 200000 iterations.

Our method may contribute to the real-time application of NeRF or enhance the results of NeRF in
the future.

References
[1] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for

space-time view synthesis of dynamic scenes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6498–6508, 2021. 1

[2] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021. 1

[3] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10318–10327, 2021. 1

10


	Introduction
	Fit a single image with positional encoding
	Implement NeRF and fit on multi-view images
	Method
	Evaluation

	NeRF extension: NeRF for dynamic scenes
	Description
	Evaluation

	Propose new ideas for dynamic nerf
	Delta-Improved Time-NeRF
	Method
	Impelmentation
	Evaluation

	Contributions
	Conclusion

