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Abstract

Crustal thickness (H) and crustal VP /VS ratio (κ) are fundamental parameters
for regional geology and tectonics. The teleseismic receiver function (RF) is the
response of the Earth structure below a seismometer to an incident seismic wave.
It is commonly used to determine major interfaces of the Earth, including the
above two parameters. [12] Up to now, a deep learning-based H-κ Method (HkNet)
has been proposed with higher accuracy and more stable results comparing to
H-κ-c method. [8] However, there are still quite large room for HkNet to improve
its accuracy and robustness. Here we propose a new method which uses Vision
Transformer (ViT) to estimate H and κ. [3] Our model can be divided into two parts.
The first part is set to denoise the receiver functions, while the second part uses
ViT to predict H and κ with denoised RFs being its input. Synthetic data tests and
real data both show that our new method obtains great accuracy and robustness.

1 Introduction

Crustal thickness (H) and crustal P-wave and S-wave velocity ratio (κ) are fundamental parameters
which can provide an essential basis for regional tectonics and dynamics. However, due to the
complexity of the crustal structure, we can only obtain these parameters from calculating instead of
measuring which brings unnecessary while heavy work to researchers. The teleseismic RF technique
is the response of the Earth structure below a seismometer to an incident seismic wave. It is treated
as an efficient seismic tool for imaging discontinuities at crustal and upper mantle depths beneath
broadband seismic stations. [7, 9, 1, 11]

The idea of estimating H and κ from RFs has been put forward for decades. The H-κ method
developed by Zhu and Kanamori (2000) has been widely used to estimate the thickness and average
VP /VS of the crust through a grid search of H and κ values. [14] Several years ago, Li (2019)
proposed a new method that corrected for the effect of crustal anisotropy and dipping interface
on RFs, which results in more reliable estimation of crustal thickness and VP /VS ratio. [8] Last
year, a deep learning-based method was developed by Wang (2022) which can automatically extract
information from RFs. Compared with traditional H-κ or the recently developed H-κ-c methods,
their method has higher accuracy and more stable results, as demonstrated through extensive and
systematic synthetic tests. [12]

Our goal is to build a model to predict H and κ from a receiver function(RF) and improve its
effectiveness and robustness to the utmost extent.

The contributions of our work are listed as follows:

1. We propose the idea of combining Vision Transformer with a geological estimating task, and
successfully build the model as expected. This is the first attempt on using ViT to estimate
crustal thickness and crustal P-wave and S-wave velocity ratio.
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2. Instead of experimenting on a single real data piece, we use a large amount of real data to
conduct experiments and obtain their average errors with the results from other traditional
methods.

3. We analyze the denoise net’s impact on estimating synthetic data and real data and their
differences with the demonstration of experiments’ results.

In this project, Youran proposed the theoretical framework, did the main coding part and polished the
report. Miaosong wrote the main body of the report and slides and helped conduct experiments.

Code and Data are available on https://github.com/Madscientist833/HKViT

2 Related Work

Estimating crustal thickness and VP /VS ratio from RFs In Geology and Geophysics, estimating
crustal thickness and VP /VS ratio from RFs is considered as the most general and effective method.
The H-κ method put forward by Zhu and Kanamori (2000) has been diffusely used to predict the
thickness and average VP /VS of the crust through a grid search of their values. [14] Li (2019)
developed a new method that corrected for the effect of crustal anisotropy and dipping interface on
RFs, which results in more accurate and reliable estimation. [8] Wang (2022) proposed a method for
automatically estimating H and κ from RFs based on deep learning and neural network.

3 Method

3.1 Workflow

The workflow of our model is shown in Figure 1. We choose simulated RF or real data as the input
of our model. Denoise net is an optional choice. Denoised RF or Simulated RF will be converted to
3-channel image, and resized from 500*73 to 224*224. The image is then send to HkViT or different
kinds of CNNs to estimate the values of H and κ.

Figure 1: Illustration of workflow

3.2 Denoise net

After a full-scale view of all data, we find out that real data contains much more noise comparing to
original data because of monitors or other reasons. To ensure our models’ robustness under real data,
we can use synthetic data to stimulate noise or train a denoise net from synthetic and original data to
denoise real data.

Many traditional denoise methods have been developed during the history of computer science (eg.
Gaussian filter); In recent years, deep learning-based methods have been put forward and proved to
be more efficient methods comparing to tradition methods. [13] Thus we propose a Denoise net with
simple CNN architecture to handle the noise in real data. The network is composed by 4 convolutional
layers which is rather simple, but it seems to be efficient enough in experiments.(PSNR[2]:28.90)
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(a) Original simulated RF (b) Denoised RF
Figure 2: The comparison of original simulated RF and denoised RF

3.3 Data preprocessing

After the denoising part has been finished, the simulated RF or denoised RF will be converted to a
3-channel image and resized from 500*73 to 224*224.Then we normalized these image with [0.485,
0.456, 0.406] as mean; [0.229, 0.224, 0.225] as std. This series of operations are set to make best
use of the weights of pre-training which play an important role in accelerating converging process.
The training process might not even be proceeded if data preprocessing part is missing which can be
demonstrated by experiment results.

3.4 Predicting network structure

For the estimating task, we take receiver function as input (3*224*224 after preprocessing) which
could be considered as a 3-channel image. and the output of the network are the values of H and κ.
Therefore, it is natural to consider CNN as the network structure for the regression task. We have
tested some CNN architectures including VGG[10], ResNet[5], and there are plenty of choices to be
experimented in future work.

Besides CNN, transformers have grown more and more popular in vision tasks [3], and reach SOTA
performance in almost all tasks. Specifically, in fine-grained classification task, almost all methods are
based on transformers since 2021, which have been demonstrated to be more efficient than CNN. [4]
In our project, differences between images are quite small which makes our model hard to precisely
predict the values of H and κ. Apart from that, as shown in Figure 3, the curves highlighted by
red rectangles in the image are crucial areas thich determine the values of H and κ. According to
these traits of our task mentioned above, it is obvious that our task shares a lot of similarities with
fine-grained classification task, so we try ViT as an option for predicting network as well.

To improve the estimating results of H and κ, we have trained our predicting network for H and κ
separately instead of jointly. With this strategy, the model’s loss can focus on a single target, which
ensure the weights of the model to reach the best fit for each target.

To enhance the model‘s performance and the efficiency of training process, we use the weights
pretrained on ImageNet [6] for almost each architecture, and it appears that models with pretrained
weights outperform models without pretrained weight.

Figure 3: Crucial features in receiver function for estimating H and κ
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4 Experiment

In the training process, we designated the same hyperparameter setting for each model in order to
compare performances between models fairly. For denoise net, we set learning rate=1e-3; batchsize=4;
optimizer=SGD; epoch=20; scheduler=Linearscheduler with warmup. For predicting task, we set
learning rate for predicting H as 1e-5, predicting κ as 1e-3; batchsize=4; optimizer=SGD; epoch=10;
scheduler=Linearscheduler with warmup.

4.1 Synthetic Tests

We first used the simulated RFs as the input of our network to estimate H and κ, We tried both
predicting H and κ directly and predicting them after applying denoise net. The results are listed in
Table 1.

Table 1: Errors of different network structures from synthetic tests

Model Name
Train data Test data

dH/H(%) dκ/κ(%) dH/H(%) dκ/κ(%)

Resnet18 11.65 4.5 12.55 4.5

Resnet18_denoised 2.6 1.8 3.2 2.5

ViT 10.91 4.2 14.53 4.2

ViT_denoised 5.8 2.1 5.7 3.4

vgg16 - 4.9 - 5.0

vgg16_denoised - 1.6 - 2.0

vgg19 - 4.6 - 4.6

vgg19_denoised - 1.5 - 1.8

- means loss is so huge that the model cannot be trained.

As shown in Table 1, Resnet18 with denoise net and Vgg19 with denoise net reached the best
performance on dH/H and dκ/κ in both train data and test data among all models. The reasons why
these CNN models outperformed ViT were considered as follows: Our training steps were too small;
Deep and large models such as ViT have not been trained sufficiently. Additionally, we found that
models with denoise net outperformed raw net, which might due to synthetic data are more smooth
thus easier to fit.Overall, our model reached a very high performance on test data with dκ/κ(%)=1.8
and dH/H(%)=3.2

4.2 Application to Real Data

Then we tested our model on real data. The results are listed in Table 2.

As shown in Table 2, Resnet18 without denoise performed best on dH/H, and ViT without denoise
performed best on dκ/κ. We recognized that unlike synthetic data, models without denoise performed
better than models with denoise in real data situation. After having a thorough research of some
specific features of real data, we found out that noise of real data were much more complicated than
our training data, so our denoise net were not efficient enough to handle real data. Besides, ViT
performed best on dκ/κ, which showed the efficiency of self-attention mechanism in complicated
cases. Lastly, errors in dκ are much less than dH, which might give reason to real data’s H varies a lot
while κ changed in a small range. Overall, our model perform well for predicting κ(dκ/κ(%)=2.4),
but for H, our model didn’t handle it very well.

5 Conclusion

In this work, we devise and realize a complete workflow to estimate crustal thickness (H) and P-wave
and S-wave velocity ratio (κ) from receiver functions. The punchline of our work is bringing in
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Table 2: Errors of different network structures from real data tests

Model Name dH/H(%) dκ/κ(%)

Resnet18 19.59 3.1

Resnet18_denoised 27.36 5.8

ViT 21.69 2.4

ViT_denoised 21.04 4.2

vgg16 - 3.4

vgg16_denoised - 4.6

vgg19 - 3.3

vgg19_denoised - 4.2

- means loss is so huge that the model cannot be trained.

Vision Transformer as the module to predict the values of H and κ whose conspicuous performance
and robustness can be demonstrated by the experiment results in both synthetic and real data tests. In
addition, we find out that denoise net seems to have negetive effects on estimating tasks of real data.

The contributions of our work are listed as follows:

1. We propose the idea of combining Vision Transformer with a geological estimating task, and
successfully build the model as expected. This is the first attempt on using ViT to estimate
crustal thickness and crustal P-wave and S-wave velocity ratio.

2. Instead of experimenting on a single real data piece, we use a large amount of real data to
conduct experiments and obtain their average errors with the results from other traditional
methods.

3. We analyze the denoise net’s impact on estimating synthetic data and real data and their
differences with the demonstration of experiments’ results.

6 Future Work

Due to multiple complicated reasons, time for us to proceed this project seems a bit tight. Thus, we
have quite a lot ideas to be realized and they are listed below.

1. We’ll conduct experiments with more steps and various settings of hyperparameters for the
experiments’ results have not reached the preconceived level up to now.

2. We’ll apply object detection on curves highlighted in Figure 3 and seperately extract features
which are useful for estimating.

3. As the denoise net shows no obvious capacity in reducing the estimating errors of H and κ,
it’s crucial to construct a well-designed and more effective denoise net.

4. We’ll manage to apply network architecture designed for fine-grained-classification task.
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