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Abstract

The growing spiritual and cultural requirements of the blind need to be met. How-
ever, barrier-free cultural products take a long time to prepare and are concentrated
in more developed cities, they cannot be widespread to those in need. Here we
show the pipeline to translate books for the visually impaired mainly with OCR
and IC techniques. Our work demonstrates how to solve this problem and our result
can build the foundation of this task. We anticipate our pipeline to be a starting
point of research in producing accessible books for the visually impaired and we
hope we can bring light to the blind.

1 Introduction

Nowadays, most accessible books are manually produced. Not only is this process inefficient,
but it may bring many manual mistakes to these books. With the development of deep learning,
many powerful techniques appear, including OCR and IC. OCR can recognize characters and IC
can describe images. With these techniques, we can design a pipeline to produce accessible books
automatically. The existing OCR technique is nearly perfect for this task, supporting up to 80
languages with high accuracy. But the existing IC technique is not capable because most of the IC
models can only work with English and the descriptions are quite simple, while we need to describe
more details of an image for the blind. Therefore, we need to produce a dataset and train IC models
to get better performance.

2 Related Works

Optical Character Recognition OCR detects and recognizes characters in an image. Text
detection algorithms include DB[17], EAST[39], SAST[33], etc. Text Recognition Algorithms include
NRTR[25], RARE[27], SRN[38], etc. With the development of deep learning, the performance of
OCR becomes better and better. Up to 80 kinds of languages are supported, and accuracy can be
guaranteed in most situations. But because of lacking data with rare words, it will make mistakes
when encountering some rare characters.

Image Caption IC is an automatic way to generate natural language descriptions for the given
image. The early image caption way can be divided into two different categories. One is that Retrieval
based image captioning likeFarhadi et al. [8], Hodosh et al. [10] andOrdonez et al. [23]. The other is
Template based image captioning, such as Yang et al. [35], Mitchell et al. [21], and Ushiku et al. [29].
With the development of deep learning, Deep neural network-based image captioning become the
mainstream. Though there are many different architectures, the most basic and widely-used model
is an encoder-decoder model, which is introduced by Kiros et al. [12] from the machine translation
field. By using the attention mechanism and other techniques, image caption can get both accurate
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and fluent output in English now. But the Cross-Lingual Image Captioning and image captioning for
non-realistic style pictures still need further research.

3 Methods

3.1 Overview

It consists of four parts: OCR, Image Extractor, IC, and text Typeset. Before we feed inputs into
the pipeline, we need to preprocess the PDF file, turning every page of the PDF file into an image
with the same height1. We call these images as page-images. OCR module2 takes in page images,
and output text boxes, which contain characters and corresponding positions(coordinates). Image
Extractor also takes in page images, finds out where the pictures are, and cuts out pictures from origin
pages. With text boxes and positions of pictures, we can typeset the characters into a half-completed
book with picture labels in the proper place. IC module gets pictures from the Image Extractor and
outputs descriptions of these pictures. Finally, we replace the picture labels with picture descriptions
one by one and output the translated book as a .txt file. Fig. 1 demonstrates the whole pipeline.

Figure 1: Pipeline

1Just the same height because the aspect ratio of one page varies from different books. If we turn pages to the
same size, it will stretch or shrink the page and interfere with subsequent operations.

2Considering OCR technology is relatively mature, we choose to use the existing OCR module. After trying
different OCR modules, we choose PaddleOCR because its API is easy to use and its performance is wonderful.
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3.2 Image Extractor

This module needs to frame every picture on a page with a rectangular area3 , and for a single
page, it should output pictures separately and accurately, so that the IC module can produce a
description for every picture. Of course, we can handle this problem with deep learning, but the
traditional method can work well.

3.2.1 Motivation

We name our algorithm for Image Extractor as Sample-Spread. As its name, the major parts
of this algorithm are sample and spread. We grid every page, and the grid points are the sample
points. For every sample point, if it is an image-point4 and we didn’t visit this picture, then we call
the spread function at this point. Otherwise, we ignore it and continue traversing sample points. The
spread function is recursive. For an image point, we traverse its neighbors. For every neighbor, if
it is also an image point and we didn’t visit this point before, we call the spread function at this
point recursively. When spreading, we keep updating area information with the coordinates of spread
points. Because the spreading will not end until we arrive at the boundary of this picture, we can get
an accurate rectangular area to cover the whole picture after exiting the spread function. Moreover,
we can make sure there is only one picture in the area because spreading will end at the boundary.
Then we continue traversing sample points until we visited all sample points. Finally, we cut out
pictures from the original page with the area information we got from the spread function.

3.2.2 Implementation Details

(a) Origin page (b) Mask characters (c) Turn to gray scale (d) Guassian blur

(e) Sample points (f) Spread (g) Output image1 (h) Output image2

Figure 2: An example of how Image Extractor works

The origin pages are RGB images, operations are slower than gray-scale images. Considering
the input book file can contain thousands of pages, the algorithm should be as fast as possible. So,
we’d better turn pages into gray-scale before the beginning of Sample-Spread.

For simplification, we consider a point as an image point when the pixel is non-white. But
colorful characters on the page sometimes will interfere with our judgment of whether a point is an

3Many pictures in books are irregular, and we can still get a precise boundary of pictures with the spread
function. But IC requires a rectangular area, so we use a rectangular area rather than a precise boundary in this
module.

4If a point is inside a picture, we call it an image point.
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image point. With the text boxes output by OCR module, we can locate these characters and mask
them out.

The spread function is recursive, but python limits recursive depth (default maximum 1000).
When we traverse neighbors, if we just visited pixel by pixel, it is easy to go beyond maximum depth.
On one hand, we need to set the recursive depth limitation as a bigger number. On the other hand, even
if there isn’t such a limitation, suppose that the whole page is a picture and its size is 2000× 1000,
we need to traverse 2 × 106 points for a single page. That’s too slow and it is unacceptable. As a
result, we adopt the stride parameter. When we spread to a point at (x, y), we traverse one of its
neighbors at (x+ stride, y) rather than (x+ 1, y). With a proper stride parameter, not only can the
algorithm be quite faster, but we can still get accurate area information.

However, stride brings an unavoidable problem: truncation. The boundary of a picture will not
be as precise as we traverse pixel by pixel, sometimes the edge of the picture will be cut out. That
happens when we traverse with a stride that is larger than the distance between that point and the
boundary. Choosing a fixed stride parameter to suit every traverse operation is impossible. So we
introduce adapted stride-traverse. We introduce a random parameter delta when traversing neighbors.
That is (x+ stride+ delta, y) rather than (x+ stride, y). If we go beyond the boundary(neighbor
is not an image point), we try to find a neighbor with stride=stride/2. In this way, we can mitigate the
truncation problems.

When we grid the page, parameter grid size (distance between two nearby sample points) is
important. If it’s too large, we may miss some pictures. But if it’s too small, the algorithm will be
slow. We ended choose grid size as width/9 and height/11, which means we sample 63 points every
page, 7 points in direction of width, and 9 points in direction of height.

Sometimes we may find the algorithm extracts the icon at the edge of the page as an image. It’s
normal for this algorithm but we don’t hope that happens. So, we set a threshold for the picture size,
only if the size of the area is bigger than 1/200 of the page area, can we consider it as a picture.

After we handle all of these problems, we can get an image extractor with great performance.

3.3 Image Caption

To complete the image captioning, we have two basic choices. One is to use an image-to-Chinese
network, while the other is a two-step strategy with image-to-English as the first step and English-
to-Chinese as the second. To choose a better strategy, we tried a lot of networks, a sample is as
follows.

Model Output

ClIP[24]-Chinese 一个美丽的油画看上去是一个灰色的树
GIT[32] digital art selected for the #

BLIP[15] an image of an oriental man and bird

Table 1: Different output of the same sample
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What we can see in this sample is that with the pre-trained model, BLIP reserve the most details
in the picture, which is just what we want. The same difference happened in almost every other
sample image. A possible reason is that there are much fewer models trained in Chinese and there
are not so many datasets providing Chinese captions, which causes the Chinese datasets available to
be often noisy. These two cause it hard for image-to-Chinese models to get better results. Among
English models, though GIT got higher CIDEr[30] scores, with the pre-trained model, BLIP performs
better. Also, BLIP has a more friendly API, which may reduce our work to add it to our final program.
As a result, we finally choose BLIP as our baseline in image Captioning

3.3.1 BLIP

Figure 3: Architecture of BLIP from Li et al. [15]

BLIP is a unified model for VLP tasks that allows us to train from noisy image-text pairs. For
its multi-task application, the authors introduce a Multimodal mixture of Encoder-Decoder (MED).
In contrast to CLIP, its architecture is much more complex. CLIP uses ViT or ResNet as an image
encoder and Transformer as a text encoder. By aligning the image features and text features, it can
generate a caption from a given image. But as 3 shows,BLIP has four main module:

• Image Encoder (ViT), used to extract the image features, which is the basis of all three
tasks.

• Text Encoder (BERT), with Image-Text Contrastive Loss (ITC) as objective, used to align
feature space of Image Encoder Transformer and Text Encoder Transformer.

• Image-grounded Text Encoder (Modified BERT), with an additional Cross Attention mod-
ule inserted between Bi Self-Att and Feed Forward, using Image-Text Matching Loss (ITM)
as an objective to predict negative or positive. It is used as the multimodal representation of
the image-text pair, to adjust the Fine-grained alignment.

• Image-grounded Text Decoder (Modified BERT), replacing Bi Self-Att in Image-
grounded Text Encoder with Causal Self-Att, using Language Modeling Loss (LM) as
an objective to generate caption.

Another reason why BLIP perform better than other model is its unique CapFilt module. This
module solves the problem that many image-text pairs from the Web are too noisy for training. In this
module, a captioner is used to generate a caption for a given Web image. It is an Image-grounded
Text Decoder to decode the text with a given image. After that, a Filter is used to remove the noise in
mage-text pairs. It uses an Image-grounded Text Encoder to judge whether the image matches the
text, and then filters the noisy text and improves the quality of the dataset.

In short, BLIP provides us with a simple way to make the dataset and train the model, and it
works well with its pre-trained model on our sample tasks.

3.3.2 Translation

Because there is no Chinese-based BLIP model, a translator is needed for the final program. A
basic idea is to use the free API of Baidu, Google, Youdao, etc. After considering the cost, accuracy,
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and fluency, we finally choose the Baidu translation API. sers By easily registering a free account,
users can simply input their app-id and app-key to our program and finish the objective task.

4 Conclusion

In this paper, We demonstrate how to combine existing techniques to design a pipeline for
producing accessible books. We have pointed out deficiencies of these techniques when applying
them to the pipeline, and how to solve these problems. As an important part of the pipeline, We
designed an efficient Image Extractor with traditional methods and got great performance. Although
the development of deep learning is relatively mature, considering there are few applications in this
field, our work can be a starting point. Further works can be covering more rare characters in OCR,
finding a more robust method of the typeset module, designing a better model for IC to get more
detailed descriptions, etc.
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