
Problem Set 2​

Introduction​

Now that we have learned about some basic building blocks of computer vision, let's do 

something cool! The purpose of this project is to stitch images with image descriptors.​

In this project, you are tasked to capture multiple sets of such images under different settings, 

detect and extract feature descriptors, stitch images, and finally blend the images. Basically, 

you'll go through all the contents learned in the past few lectures.​

The following method of stitching images should work for most image sets, but you would need 

to be creative if you plan to work on harder image sets.​

Submission: You will need to submit the code in a single zip file and a short report written (in 

English) in LaTex. Note: due to the nature of open problems and no provided templates, any 

students who submit similar codebases would undergo detailed checks for plagiarism. Again, 

you're allowed to discuss the problems in a group, but the code and the report must be done 

individually.​

Q1. Implement Harris Corner Detector with non-maximal 
suppression. (20%)​

Step 1. Calculate spatial derivative (5%)​

You should choose appropriate filters that produce the gradient of the image along the X and Y 

axis. You can reuse the convolution function implemented in Problem Set 1. For simplification, 

the input image needs to be converted to grayscale. The code should be formatted as:​

def gradient_x(img):

# implementation

return grad_x

[Input] ​

img  = {ndarray: (W, H)}    The image to process. ​

[Output] ​

grad_x  = {ndarray: (W, H)}    The gradient along X axis.​

https://yzhu.io/misc/latex/course_project.zip
https://yzhu.io/misc/plagiarism/


The function that calculates grad_y is similar in format.​

Step 2. Calculate Harris response (5%)​

Implement the function that calculates ​   

for each window (small image patches) when moved in both X and Y directions. Meanwhile, you 

should call the gradient_x and gradient_y functions in step 1.​
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def harris_response(img, alpha):

# implementation

return R

[Input] ​

img = {ndarray: (W, H)}    The image to process. 

alpha = {float32}    Harris corner constant, usually between 0.04 - 0.06.​

window_size = {int}    Size of the sliding window for the windowing function.​

[Output] ​

R = {ndarray: (W, H)}    Harris response of each pixel.​

Step 3. Select candidate corners and non-maximal suppression (10%)​

Now it's time to select the pixels that are likely to be a corner. These candidates should go 

through a non-maximal suppression to avoid too much-duplicated information carried by 

nearby corner pixels. Only the candidate corner with maximal Harris response is kept within a 

given area. ​

def corner_selection(R, threshold, min_distance):

# implementation

return pixels

[Input] ​

R  = {ndarray: (W, H)}    Harris response of each pixel.​

threshold  = {float32}    The threshold value of R which to consider as corner candidates.​

min_distance  = {int}    The minimum distance of two nearby corner.​

[Output] ​

pixels  = {list: N}    A list of tuples that contains​ pixels selected as corners. e.g., pixels = 

[(5, 8), (3, 9)] means two pixels at (5, 8) and (3, 9).​

N



Q2. Implement Histogram of Gradients. (15%)​

In this part, you will implement a Histogram of Gradients (HOG) as a feature descriptor. Refer to 

the course slides for the details of implementation. You are not required to list the variables (e.g.,

 window_size) as input of the function. Instead, hard-code them in the program. There's no 

template for coding, but you should take into consideration at least the modules below:​

1. Horizontal and vertical gradients​

2. Gradient direction calculation​

3. Prominent gradient selection​

4. Histogram for a given cell​

5. Feature vector construction​

Overall, the main function should be like this:​

def histogram_of_gradients(img, pixels):

# implementation

return features

[Input] ​

img  = {ndarray: (W, H)}    The image to process. ​

pixels  = {list: N}    A list of tuples that contain​ indices of pixels selected as corners in Q1.​N

[Output] ​

features = {ndarray: (N, L)}    A list of L-dimensional feature vectors corresponding to the 

input pixels . Note that the order should be consistent with pixels .​

Q3. Local feature matching (15%)​

Given a pair of images, your task is to extract paired interest points. First, detect corners using 

corner_selection  written in Q1. Next, generate corresponding features using 

histogram_of_gradients  written in Q2. Finally, you need to match the two sets of features 

according to the euclidean distance and a certain threshold. The outputs should be two sets of 

pixel indices pixels_1  and pixels_2 . For example, pixels_1 = [(1, 3), (2, 4)] 
  pixels_2 = [(2, 5), (3, 7)]  means (1, 3)  in img_1 matches (2, 5)  in img_2, 

and (2, 4)  in img_1 matches (3, 7)  in img_2.​

def feature_matching(img_1, img_2):

# implementation



return pixels_1, pixels_2

[Input] ​

img_1 , img_2  = {ndarray: (W, H)}    The image to process. ​

[Output] ​

pixels_1 , pixels_2 = {list: N}    A list of tuples (x, y)  that contains​ indices of 

pixels selected as corners in Q1.​

N

Q4. Image stitching and blending (30%)​

Warp a pair of images so that corresponding points align. Make full use of the functions you have 

written. We provide 5 pairs of images with parallel image planes. These images can also help you 

to validate the functions in Q.1~Q.3.​

Step 1. Compute the alignment of image pairs (5%)​

compute_homography  takes two feature sets from image_1  and image_2 , and a list 

(lens>4) of feature matches and estimates a homography from image 1 to image 2. ​

def compute_homography(pixels_1, pixels_2):

# implementation

return homo_matrix

[Input] ​

pixels_1 , pixels_2  = {list: N'}    A list of tuples (x, y)  that contains​ indices of 

pixels.​

N ′

[Output] ​

homo_matrix  = {ndarray: (3, 3)}   The estimated homography matrix.​

Note: In compute_homography , you will compute the best-fit homography using the Singular 

Value Decomposition (SVD). ​

Step 2. Align the image with RANSAC (10%)​

align_pair  takes two-pixel sets, the list of pixel matches obtained from the feature detecting 

and matching component,  a motion model, m (described below) as parameters. Then it 

estimates and returns the inter-image transform matrix homo_matrix  using the RANSAC to 

compute the optimal alignment. You will need RANSAC to find the homography with the most 

inliners. ​



def align_pair(pixels_1, pixels_2):

# implementation

return est_homo

[Input] ​

pixels_1 , pixels_2  = {list: N'}    A list of tuples (x, y)  that contains​ indices of 

pixels​

N ′

[Output] ​

est_homo  = {ndarray: (3, 3)}   The optimal homography matrix.​

Step 3. Stitch and blend the image (10%)​

Given an image and a homography, figure out the box bounding the image after applying the 

homography, warp the image into target bounding box with inverse warping and blend the 

pixels with their neighbors. ​

def stitch_blend(img_1, img_2, est_homo):

# implementation

return est_img

[Input] ​

img_1 , img_2  = {ndarray: (W, H)}    The image to process. ​

est_homo  = {ndarray: (3, 3)}   The optimal homography matrix​

[Output] ​

est_img = {ndarray: (W', H')}    The blended image. ​

Note:​

1. When working with homogeneous coordinates, don't forget to normalize when converting 

them back to Cartesian coordinates.​

2. Watch out for black pixels in the source image when inverse warping. You don't want to 

include them in the accumulation.​

3. When doing inverse warping, use linear or other interpolation for the source image pixels.

4. First try to work out the code by looping over each pixel. Later you can optimize your code 

using array instructions and numpy tricks (numpy.meshgrid, cv2.remap). You are not 

required to do this optimization. ​

5. Save the output blended image as blend_id.png.​



Step 4. Generate a panorama  (5%)​

Your end goal is to be able to stitch any number of given images - maybe 2 or 3 or 4 or 100; your 

algorithm should work, at least not report any errors. If random paired images with no matches 

are given, your algorithm must report an error.​

Def generate_panorama (ordered_img_seq)

# implementation

return est_pano

[Input] ​

ordered_img_seq  = {List}    The list of images to process.​

[Output] ​

est_pano = {ndarray: (W', H')}    The panorama image. ​

Note:​

1. The input is an ordered sequence of images, which means the i th image is supposed to 

match with i-1  th and i+1  th image.​

2. Save the output panorama image as panorama_id.png.​

Q5. Analyze (20%)​

With the final stitch_blend  function, you should be able to stitch two or multiple images 

into a panorama. However, the quality of the stitched image is determined by lots of factors, 

including how you move your camera during shooting, what kind of descriptors you use, how 

good the descriptors are, and how you blend the images. In this problem, you need to​

1. Try various settings for shooting the image sequences, e.g., (i) rotate the camera only, (ii) 

translate the camera only, and (iii) simultaneously rotate and translate the camera. (5%)​

2. Try small and large translational/rotational distances while moving the cameras, and analyze 

how it affects the panorama generation. (5%)​

3. Try shooting a sequence with some objects moving. What can you do to remove "ghosted" 

versions of the objects? (5%)​

4. Try a sequence in which the same person appears multiple times. (5%)​

Report the aforementioned images and results. Summarize how to get a better panorama in 

terms of shooting the sequences and designing the algorithms.​

Extra Credits (20%)​



You can choose at most two bonus problems.​

BQ1 (10%)​

Explore how to combine filtering and advanced blending techniques (e.g., pyramid blending, 

poisson blending) to get a better panorama. Make comparisons to show the improvements and 

analyze. (10%) ​

Note: third-party code for blending is allowed.​

BQ2 (10%)​

Explore how to use more powerful and robust feature detectors and descriptors to improve the 

panorama, make comparisons to show the improvements and analyze. (10%)​

Note: third-party code for feature extractor is allowed.​

BQ3 (10%)​

Explore how to get a 360 panorama with spherical projection. You might additionally need the 

focal lengths of images. Make comparisons with getting 360 panorama from homography and 

analyze. (10%)​

Note: third-party code for spherical projection is allowed.​

Coding Rules​

You may use NumPy, SciPy, and OpenCV2 functions to implement mathematical, filtering, and 

transformation operations. Do not use functions that implement keypoint detection or feature 

matching.​

When using the Sobel operator or gaussian filter, you should use the 'reflect' mode, which gives 

a zero gradient at the edges.​

Here is a list of potentially useful functions; you are not required to use them:​

• scipy.ndimage.sobel

• scipy.ndimage.gaussian_filter

• scipy.ndimage.filters.convolve

• scipy.ndimage.filters.maximum_filter

• scipy.spatial.distance.cdist

• np.max, np.min, np.std, np.mean, np.argmin, np.argpartition

• np.degrees, np.radians, np.arctan2


