
Problem Set 1​

Problem 1​

Everyone can be a photographer​

As SuShi wrote in his poem, "It’s a range viewed in face and peaks viewed from the side,

assuming different shapes viewed from far and wide." This is a vivid description of mountains

viewed from different directions. Similar phenomena are common in our daily life, where the

same scene or object looks completely divergent in different photographs. From the lectures, we

have learned that changing the viewpoint and focal length (extrinsic and intrinsic parameters) of

the camera can produce completely opposite visual expressions and tell different stories. The

following photos are examples that show the choices of lenses and viewpoints that alter the

illustrations of the COVID era.​

Your task is to take and submit three groups of photos inside Peking University. Inside each

group, various (2 or more) photos tell different stories by shooting the same object or

scene with various camera settings. You can describe each group of photos with one sentence

of description. The class will vote on the best three groups of photos and post them on the

website. ​

Note: Good photos take time to collect or create. Start earlier and select from a larger pool.​

Problem 2​

Camera parameters from the image

Straight roads and cubic buildings are representative of landscapes in Beijing. Walking along the

street and taking a picture, you may have noticed that the parallel lines of the roads and

buildings can be used to calculate the pose and intrinsics of the camera. Please take a photo

using your mobile phone wherever it is feasible to calculate the focal length and camera

height from the image. Calculate the focal length and camera height of that image and

submit the derivation process. ​

Hint: Calculating the focal length relates to camera calibration with vanishing points; calculating

camera height might need a reference object.​

Note: You should specify how the coordinate systems of the world (global) and the camera

(local) are set up. The camera should avoid operating in any mode other than the standard

mode to minimize image distortion. ​

Problem 3​

Image filtering and processing​

This problem is intended to familiarize you with basic algorithms in Python, NumPy, and image

filtering. This project requires you to implement six functions, each of which builds onto a

previous function:​

1. cross_correlation_2d

2. convolve_2

3. gaussian_blur_kernal_2d

4. low_pass

5. high_pass

6. hybrid_image

Image Filtering. Image filtering (or convolution) is a fundamental image processing tool. See

chapter 3.2 of Szeliski and the lecture materials to learn about image filtering (specifically linear

filtering). Numpy has numerous built-in and efficient functions to perform image filtering, but

you are asked to write your own function from scratch for this assignment. More specifically, you

will implement cross_correlation_2d , followed by convolve_2d , which would use
cross_correlation_2d .​

Gaussian Blur. As you have seen in the lectures, there are a few different ways to blur an image,

for example, taking an unweighted average of the neighboring pixels. Gaussian blur is a special

kind of weighted averaging of neighboring pixels. To implement Gaussian blur, you will

implement a function gaussian_blur_kernel_2d that produces a kernel of a given height
and width, which can then be passed to convolve_2d from above, along with an image, to
produce a blurred version of the image.​

High and Low Pass Filters. Recall that a low pass filter removes the fine details from an image

(or, really, any signal), whereas a high pass filter only retails the fine details, and gets rid of the

coarse details from an image. Thus, using Gaussian blurring as described above, implement

high_pass and low_pass functions.​

Hybrid Images. A hybrid image is the sum of a low-pass filtered version of the one image and a

high-pass filtered version of the second image. There is a free parameter, which can be tuned for

each image pair, which controls how much high frequency to remove from the first image and

how much low frequency to leave in the second image. This is called the "cutoff-frequency". In

the paper, it is suggested to use two cutoff frequencies (one tuned for each image), and you are

free to try that, as well. In the starter code, the cutoff frequency is controlled by changing the

standard deviation (sigma) of the Gaussian filter used in constructing the hybrid images. ​

Submit your code (all six functions in hybrid.py), README, left_id.png, right_id.png,

hybrid_id.png in one folder without subfolders. Fail to comply with the following

requirements will result in a score of 0 as your score is automatically evaluated by a

program!​

Requirements:​

1. Your code will be scored by directly running hybrid.py, which reads two images at a time for

hybrid and saves the hybrid result as a new image.​

2. Please put all your code (hybrid.py) and images in one folder. Make sure that all the

image paths (input and output) in hybrid.py are relative paths, in a form that hybrid.py can

correctly execute to produce hybrid images.​

3. We provide five pairs of aligned images that can be merged reasonably well into hybrid

images. We encourage you to create additional examples (e.g., change of expression, morph

between different objects, change over time, etc.). See the hybrid images project page for

inspiration.​

4. In this assignment, you should not use Numpy, Scipy, OpenCV, or other pre-implemented

functions that directly finish the task. You are allowed to use basic matrix operations like

np.shape, np.zeros, and np.transpose. For high efficiency of the code, you are encouraged to

make full use of Numpy vectorization and avoid nested for loops. You are free to call your

own previous functions during implementation.​

http://olivalab.mit.edu/hybrid_gallery/gallery.html
http://olivalab.mit.edu/publications/OlivaTorralb_Hybrid_Siggraph06.pdf
http://olivalab.mit.edu/hybrid_gallery/gallery.html

Submit your project with a compressed folder that contains
directories: problem1, problem2, problem3. Put the result in the
corresponding directory.

